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1 Introduction

Stochastic volatility models are widely used as alternatives to the Black-Scholes model in
pricing of equity derivatives. In many cases, closed-form solutions were derived for the
prices of European calls and puts. However, except in a few cases, no analytical solutions
to the option pricing problem were derived with more general assumptions, e.g. when the
spot rate is stochastic or when the option payoff involves several assets. Option pricing
via Monte Carlo simulation is the only tool available in such cases. But even this path
is not simple. Usually, the simulations involve two types of error. The first error arises
from the discretization of the underlying process. The second one arises from Monte Carlo
simulation of the discretized process. Normally, we can do little to reduce the error of
the first type effectively. However, the error of the second type can often be reduced
significantly.

The problem of reducing the error caused by the Monte Carlo simulation is directly
connected with the problem of reducing the variance of the estimator of the option price.
One of the methods that allow to reduce the variance is the importance sampling method,
which was introduced for diffusion processes in [8]. However, an effective application of
this method requires some specific knowledge of the process that is to be simulated. For
example, in [1] and [2] an application of the importance sampling method was introduced
for a class of stochastic volatility models. There, some approximations to the option prices
in a stochastic volatility environment were used.

In this article, we derive a variance reduction technique for the GARCH stochastic
volatility model with delay (see [5]). As an application of the technique, we present pa-
rameters estimation from the option prices traded in the market. We use least-squares
optimization to find parameters of the model implied in the market prices. Its multiple
iterations can now be afforded with a small computational cost. This is mainly because
of the increased effectiveness of the Monte Carlo simulations for pricing options. In our
results the GARCH stochastic volatility model shows a very good fit with the S&P500
index data and S&P500 option trade data.

The structure of this work is as follows. In Section 2 we briefly discuss the GARCH
stochastic volatility model with delay. In Section 3 we review the option pricing approach
for this model that was derived in [4] and [5]. In Section 4 we introduce the importance
sampling for diffusions with delay. In Section 5 we consider an option price approximation
that leads to the variance reduction for our GARCH model. In Section 6 we show the
application of the variance reduction technique to the parameters estimation. We use the

least-squares optimization to find the parameters from the S&P500 option trade data.



Several figures demonstrate our results.

2 The GARCH Stochastic Volatility Model

In [5] the following stochastic volatility model for stock price process (S(t))o<i<r Was

introduced:
dS(t) =rS(t) dt + o(t)S(t) dW (1),
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where W (t) is a standard one-dimensional Wiener process on a filtered probability space

(Q,{F}o<i<r, P), parameters a, v, 7, i1, r and V' are positive. Here r is a constant risk-free
rate, p is a drift rate of S under a physical measure.

The main feature of this model is that it arises as a continuous-time analogue of
GARCH(1,1) model
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and therefore its volatility possesses such important properties as mean reversion and
clustering. Secondly, the equation for volatility does not contain another Wiener process
as in most stochastic volatility models. However, the volatility o(¢) in (1) is stochastic
due to the presence of S(t) and S(¢ — 7) in its drift coefficient. This feature ensures that
the stock price model (1) constitutes a complete market. That is, any contingent claim on
stock S can be replicated in time by a trading strategy in shares of stock S and a money
account.
For the purpose of deriving an option pricing approach, we consider a simpler model
for S(t) similar to (1):
dS(t) =rS(t) dt + o(t)S(t) dW (1), (2)

where
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Note that transition of the process S at time ¢ is determined by its history over time
interval [t — 7, t]. Therefore, the initial data for (2) should be given on the interval [—7, 0]

and we denote it by ¢ € C([—,0], R). Parameter p in model (2) was assumed 0 because



of potential problems related to its estimation. Note however that this does not affect our

model (1) since presumably u takes very small values, e.g. 0.05.

3 Option Pricing

Now we review some facts on option pricing in the market where a stock price follows (2)
(see [5]). The fair price of European option with terminal payoff ¢(S(7)) is given by the

following conditional expectation
E[e ™™ 9(S(T)) | 7] . (3)

Using the Markov property for (2), the expectation is a functional of Sy := {S(u) : t—7 <
u < t}, which we denote F'(t,S;).
We seek F(t,S;) in the following form

F(t,S) = /_ 0 e TH(S(t +0), S(t), t)db, (4)

where H € C%*'(R x R x R,). Then, H(S(t + 6), S(t),t) satisfies the following equation

0
0= L(t, St) = H|9:0 - €_T0H|9:_T + /
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(5)

To find the option price F'(t,S;), we can solve the equation subject to boundary condition
F(T, 57) = g(S(T)).

A solution to equation (5) seems hard to find in a closed form. However, we can employ a
finite difference scheme to solve the equation numerically (see [5]).

On the other hand, we can use Monte Carlo simulation of independent realizations
S™(t) of the process S(t) (discretized using the Euler scheme, see [6]) and approximate
the expectation (3) with

N
1 —r(T'— n
F(t,5;) =~ Nze T=0g(s™(T)). (6)
n=1
Then, by the central limit theorem, the option price belongs to a confidence interval whose
radius is proportional to the variance of the estimator. Normally, the variance is large and

a substantial number of simulations are required to obtain a desired precision.



Both methods of finding the option price are more or less equivalent in terms of the
computational efficiency. However, we can increase the efficiency in the second approach
by reducing the variance of the estimator. With reduced variance, a smaller simulation
time would be needed to get the desired precision of the estimator (6).

There is an efficient variance reduction technique, the so-called importance sampling
for diffusions (see [8]). Employing the importance sampling variance reduction technique
requires some approximation of the function F(¢, S;). Using equation (5), we can approx-
imate the option price and then use this approximation to derive a more efficient Monte
Carlo estimator to (6).

4 Importance Sampling for Diffusions with Delay

In this section, we adapt a general formulation of the importance sampling technique
introduced in [8]. Given a scalar square integrable F;-adapted process of the form h(t, S;),

we define the following process

Q(t) = exp { /0 (. S,) du + % /0 R, S,) dW(u)} |

If E[Q(t) '] = 1, then (Q(t))o<t<r is a positive martingale and we can define an equivalent
to P probability measure Q through Radon-Nykodym density

dQ

ap =Q(T)".

By Girsanov’s theorem, the process defined by
t
We(t) = W(t) +/ h(u, S,) du
0

is a standard Wiener process under the measure Q. With respect to this new measure, the

option price defined by F'(¢,S;) can be written
F(t,S) = E2 [e " Vg(S(T)QT) | F] .

We can estimate the expectation by

T 3T g(SO(T)QU(T), (7



whose variance may be smaller than the variance of the estimator (6). Determining the
function h(t,S;) that makes the variance smaller (or the smallest possible) is the sole goal
of the importance sampling method.
The stock price process S satisfies the following equation in terms of the new Wiener
process W<
dS(t) = [r — o(t)h(t, S)] S(t) dt + o(t)S(t) dW ().

Using lemma 1 (see Appendix), we can write an equation for F(¢, S;)

dF(t,S,) = [L(t, S,) + rF(t,8,)] dt +o(t)S(t) / 0 e HL(S(t + ), S(t), t)d8 dW (2),

—T

where operator L(t, S;) was defined in (5). Since L(t,S;) = 0, we have
d(F(t, 5)Q(1)) = rF (¢, S)Q(1) di+

+ (F(t, Sy)h(t,S;) + o (t)S(t) / O

—T

e " Hy(S(t+6), S(t), t)d9> Q(t) dWe(t),

which leads to the following expression for variance
Var®(g(S(1))Q(T)) =

= E° /O ' e T=0Q2(t) [F(t, S h(t,S;) + o (t)S(t) /
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0 2
e " H(S(t+6),S(t), t)dﬁ] dt,

as opposed to

0

Var® ((S(T))) =E” / " [a(t>5(t> / e_reﬂé(S(HG),S(t),t)dO] .

—T

Therefore, the function A(t,S;) that makes the variance of the estimator (7) zero is

h(t,st):—(;ffiféf; / e HL(S(t + ), S(t), £)do. (8)
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Note that we could make the estimator of F'(¢,S;) “perfect” only if we knew the exact
expression for F'(¢,S;). Fortunately, it is still possible to get a “good” estimator by ap-

proximating the function F'(¢,S;) and thus reducing the variance of the original estimator.



5 Option Price Approximation and Variance Reduc-
tion

Consider a European call option with maturity 7" and payoff ¢(S(7")) = max(S(T") — K, 0).
The fair price for this option at time ¢ when the stock price process follows GARCH model
(2) is given by

F(t,8) =FE [e" T P max(S(T) — K,0) | F] .

This expectation can be estimated with (6), whose variance can be reduced using the
importance sampling method. As it was mentioned in the previous section, we need to get
an approximation to the option price in order to define a new measure that reduces the
variance of estimator.

We approximate the option price F(t,S;) with the Black-Scholes call option price.
Observe that the GARCH volatility (2) is mean reverting to the level v/V. We can use
this fact to approximate option price F(¢, S;) with Black-Scholes price Fgg(t, S(t)), where
constant volatility v/Vgs is used. Then similarly to (8), we choose function h(t, S;) as

h(t,S;) =

a(t)S(t) OFss(t,S(t))
- Fus(t, 5(1)) 05

On Figure 1 we show how the radius of 95% confidence interval of the option price estimator
(7) varies as different values of Vg are chosen. Note that the minimum radius 0.0195 is
reached at Vgg close to the long-run variance rate V' = 0.0141. The corresponding radius
for the regular estimator (6) is 0.1328, and thus we reduced the radius of the confidence
interval 6.8 times. This is equivalent to 46.4 times reduction of a number of realizations
required to get a desired precision of the estimator.

The efficiency of the variance reduction can be judged from the following empirical
viewpoint. If we were to simulate a Monte Carlo estimator of the call option price when
the stock price volatility is constant, we could choose the estimator with theoretically zero
variance since the option price in this case is known and it is given by the Black-Scholes
formula. However, there is a discretization error in approximating the stock price process,
and therefore the variance of the estimator is not zero anymore but close to it. We can use
this lowest possible variance for a given time discretization step as a benchmark for the
variance reduction in our model (2).

The radius of the confidence interval corresponding to the lowest possible variance in
the constant volatility case is 0.0135. Since for our model (2) it is 0.0195, the efficiency of

the variance reduction is very good. Moreover, this shows that using a relatively low-order
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Figure 1: Radius of 95% confidence interval of the Monte Carlo estimator vs. variance rate
VBs used in the option price approximation. Several realizations are shown.



approximation of the option price we can get a significant variance reduction. This fact

was observed in [2] and it is confirmed by our numerical results.

6 Parameters Estimation

Parameters of our stock price model (2) are
V =00141, «=0.0575, 7=0.0539, 7=0.028, o2=0.011L.

These parameters were estimated from S&P500 index data for years 1990-1993 (see [5])
using the maximum likelihood method. The only parameter that we could not estimate
from the index data was the risk-free rate r. In this article, we use the S&P500 option
trade data to imply this parameter.

Given the option price as a function F' of its unknown parameters 6, we can find the
values of the parameters that fit the option price data. The fit can be achieved using the

following least-squares optimization
i § (F(0,T;, K;) — Cy)?
min Z._1( 0,T;, K;) — Cy)~,

where F'(0,T;, K;) is the European call option price as a function of unknown parameters
f, time to maturity 7; and strike price K;; C; is the option price observed in the market.
The parameter r is the only unknown parameter. For any fixed r, T; and K;, the

function F(r,T;, K;) is given by the following expectation
F(r,T;, K;) = E [e """ max(S(T;) — K;,0)]

where S(t) follows (2). It can be computed using the accelerated Monte Carlo from the
previous section.

On Figure 2 we present numerical results on estimation of parameter r from the mar-
ket data. Observe that when the option maturity increases, the estimated risk-free rate
decreases to some mean-reversion level. It is well-known that a bond spot rate is mean-
reverting. Therefore, it is reasonable to assume that the risk-free rate implied in S&P500
options market possesses this property. Hence, it is of great interest to fit the rate r with

some of the well-known models of the spot rate, e.g. Cox-Ingersoll-Ross (CIR) model

dr(t) = a(m — r(t)) dt + b\/r(t) dW'(t), 7(0) = ro.
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Figure 2: Constant risk-free rate r implied from the market prices vs. maturity for different
strike prices. The estimation is based on GARCH stochastic volatility model for S&P500
index.

In this case, the stock price process follows
dS(t) =r(t)S(t) dt + o(t)S(t) dW (t)

with o(t) same as in (2), where W"(t) and W (t) are assumed uncorrelated.
Estimation of parameters m, a, b and ry is performed using the same least-squares

approach. First, the European call option price is given by the following expectation

FO.T,K) = E [exp {— /0 ! r(u)du} max(S(T}) — K;,0)| |

where 6 = (m, a, b, 7). The corresponding option price estimator is

N T
1 7
N D P {‘ / i (u)dU} max(S®)(T;) - K, 0).
n=1 0

Iteratively performing Monte Carlo simulations of the option price and comparing it with
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Figure 3: European call option price vs. strike price for three different maturities. Dashed
lines represent bid and ask prices observed in the market and solid lines represent simulated
prices based on CIR-GARCH stochastic volatility model.
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Figure 4: Implied volatility vs. strike price for three different maturities. The volatility
plots correspond to the option prices depicted on Figure 3.
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the market data, we obtained the following parameter estimates
m = 0.0075, a=8.5, b=0.3, ro=0.07.

On Figure 3 we show the fit of the simulated option prices with the prices observed in the
market. Note that the fit is exact except for some out-of-money options. Figure 4 presents

the corresponding implied volatility plots.

Conclusion

In this article we developed a method to accelerate the Monte Carlo simulation used in
option pricing for diffusions with delayed response. The method involved the variance
reduction importance sampling technique adapted from [8]. The concrete diffusion model
with delay used in option pricing was the GARCH continuous-time stochastic volatility
model with delay introduced in [5].

The second purpose of the article was to develop estimation of the parameters involved
in the model from the option trade data. Namely, the parameters used in the model for
the risk-free spot rate. We assumed that the spot rate follows Cox-Ross-Ingersoll (CIR)
model while the equity price follows already mentioned GARCH model. The estimation of
parameters of the GARCH model from the index price data was previously derived in [5].
In order to estimate the parameters of the model for the spot rate, we had to use the option
price data since the risk-free rate arises only in the risk-neutral evaluation of contingent
claims, e.g. European call options. The estimation was carried out by the least-squares
optimization where the accelerated Monte Carlo was iteratively used. Our results based on
S&P500 data showed an exact fit of simulated option prices with the market prices except

for some out-of-money options.

Appendix

Here we formulate the following generalization of Ito’s lemma, which was used in Section 4.

The proof of this lemma is given in [4].

Lemma 1 Suppose a functional F : R, x C([—7,0], R) — R has the following form

F(t,S,) = / 0 h(O)H(S(t +0), S(), 1)d6,

-7
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for He C*%*"(Rx R x Ry) and h € C'([-7,0], R). Then

F(t,S:) = F(0,¢) + /t AF (u, S,)du + /ta(u, S.)S(u)BF (u, S,)dW (u),

where for (t,x) € Ry x C([-1,0], R),

AF(t,z) =h(0)H (2(0),2(0),t) — h(—7)H (z(~7),z(0),t)—
/0 W (0)H d9+/ h(0) LH (2(0), (0), £)d6),
F(t,z) /h 0) L (2(6), 2(0), £)d6),

and

LH((0), 2(0),6) =r2(0) Hy(a(0),2(0),0) + D70

+ H(z(0), z(0), 1),

H,((6), 2(0), 1)+

where H],i = 1,2,3, represents the derivative of H(xz(0),z(0),t) with respect to i-th argu-

ment.
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