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Abstract

During the last three decades there has been a booming development in modeling
of financial security markets, and a large number of models have been introduced
following the pioneering work of Black and Scholes in 1973 on option pricing. One
of the key assumptions in the Nobel-prize winning work of Black and Scholes is
that the parameter of volatility is a constant. This controversial assumption gener-
ates a significant development of stochastic volatility models. Unfortunately, most
stochastic volatility models constitute incomplete security markets, an inconvenient
feature for the purpose of option pricing.

My study of security markets is aimed to develop a more general class of viable
stochastic volatility models that constitute complete security markets. These models
contain only one source of randomness, unlike the most stochastic volatility models
studied in the literature. We allow a delayed response in the diffusion model for the
price of the underlying asset, which may be a stock, an index or any other type of
equity. The concept of delayed response is not new and it was introduced in the
finance literature as a plausible explanation for abnormal behavior of equity returns.
There is also statistical evidence in support of the past-dependence of equity returns.

The subject of this work is a theory of stochastic delay differential equations with
applications to finance. In particular, we study stock price modeling and option
pricing in the markets with delayed response. We introduce several continuous-
time models for stochastic volatility with delay connected with the GARCH model,
the widely used econometric model. In these models the time delay is considered
constant. We illustrate the viability of the models by looking at the simulated

implied volatility structure. We introduce a general option pricing approach for



markets with delayed response. For those equations for which it is hard to find
analytic solutions, we provide a numerical scheme. We also address the important
issue of parameter estimation.

Based on stock market data, we show that there is a high variability of the
estimated delay. In order to explain this, we extend the aforementioned models
to include a state-dependent delay. As an essential tool, we derive a discrete-time
approximation result for the so-called stochastic state-dependent delay differential
equations. We show the influence of state-dependence of the delay on option pricing

through a variety of U-shaped implied volatility plots.

vi



Acknowledgements

I would like to thank Prof. Jianhong Wu and Prof. Anatoliy Swishchuk for their
supervision and continuing support of my research work. Their experience passed on
to me has considerably helped me in writing this thesis. I also would like to thank
Prof. Thomas Salisbury and Prof. Hélene Massam for their valuable comments
and suggestions. And, finally, I would like to thank Prof. Joann Jasiak, Prof. Jin-
Chuan Duan, Prof. Salah-Eldin Mohammed, Prof. Xuerong Mao and Prof. Bernt

ksendal for discussions and communications.

vii



Contents

1 Introduction
1.1 Volatility modeling . . . . . ... ... L Lo
1.2 Modeling of delayed response . . . . . .. . ... ... L.

1.3 Structure of the thesis . . . . . . . . . . . . ...

2 SDDE:s in financial data modeling
2.1 Stochastic delay differential equations . . . . . . . . . . ... ... ..
2.2 Model of (B, S)-securities market with delayed response . . . . . . . .
2.3 A continuous-time GARCHmodel . . . . . .. ... ... .. ....

3 Option pricing and numerical simulations
3.1 General option pricing framework . . . . . .. ... ...
3.2 A continuous-time GARCH model for volatility
with bounded memory . . . . . . . ... ... L.
3.3 Finite-difference method for the general equation . . . . .. ... ..
3.4 Option pricing via accelerated Monte Carlo. . . . . . .. .. ... ..
3.4.1 Importance sampling for diffusions with delay . . . . . . . ..

3.4.2 Option price approximation and variance reduction . . . . . .

4 Parameter estimation
4.1 Drift estimation . . . . . . ... Lo
4.2 Time delay and other parameters estimation . . . . . ... ... ...
4.2.1 Consistency and asymptotic normality of the ML estimators .

4.2.2 Numerical results . . . . . . . . . ... oo

viii

11
16

20
20

25
27
29
31
33



4.3 Fitting option price data with CIR-GARCH model

5 Stochastic state-dependent delay

differential equations

5.1 Existence of a solution to SSDDE
5.2 Discrete-time approximations of SSDDEs
5.2.1 SSDDE: typel . .. ... ... .. ... ... ... ...
5.2.2 SSDDE:typell . . . .. .. .. ...

5.3 Continuous-time GARCH model with state-dependent delay

6 Appendices

6.1 Derivation of continuous-time analogue of GARCH

6.2 Proofof Lemma 3.1 . . . . . . . . . . ..

7 Conclusions and future work

8 Curriculum vitae

1X

49
49
51
51
%)
o8

61
61
64

66

68



List of Figures

10

Solution of FDE (2.16) vs. time. . . . .. .. .. .. ... ......
Dependence of variance v(T) on delay 7. . . . . ... ... ... ...
Radius of 95% confidence interval of the Monte Carlo estimator vs.
variance rate Vgg used in the option price approximation. Several
realizations are shown. . . . . . ... ... ... L.
Constant risk-free rate r implied from the market prices vs. matu-
rity for different strike prices. The estimation is based on GARCH
stochastic volatility model for S&P500 index. . . . . . . . ... .. ..
European call option price vs. strike price for three different maturi-
ties. Dashed lines represent bid and ask prices observed in the mar-
ket and solid lines represent simulated prices based on CIR-GARCH
stochastic volatility model. . . . . . . . .. ... ... ...
Implied volatility vs. strike price for three different maturities. The
volatility plots correspond to the option prices depicted on Figure 5. .
Implied volatility for models with constant delay. . . . ... ... ..
Implied volatility for models with nearly constant delay.. . . . . . . .
Implied volatility for models with decreasing state-dependent delay.

Implied volatility for models with various state-dependent delays.

93



List of Tables

Monte Carlo simulation results for continuous-time GARCH (2.14)
with « =14.375and y=13475. . . . . . . ... ...
Implied volatility for stochastic volatility model (3.12) with a =
0.0575 and v = 0.0539: a comparison of Monte Carlo simulation
results with the finite difference method (FDM) for general equation.
Implied volatility for stochastic volatility model (3.12) with o =
14.375 and v = 13.475: a comparison of Monte Carlo simulation
results with the finite difference method (FDM) for general equation.
Results of ML-AICC method of parameter estimation applied to
S&P500 data. . . . . ..o
Autocorrelation structure in the dataset for 1990-1993. . . . . . . ..
European call option price (OP) for different values of r and p. All

the other parameters are fixed. . . .. .. .. ... ... .......

xi

89

89



1 Introduction

In the early 1970’s, Black and Scholes made a major breakthrough by deriving
pricing formulas for vanilla options written on the stock (see [8]). Their model and
its extensions assume that the probability distribution of the underlying cash flow
at any given future time is lognormal. This assumption is not always satisfied by
real-life options as the probability distribution of an equity has a fatter left tail and
thinner right tail than the lognormal distribution (see [35]), and the assumption of
constant volatility o in financial models (such as the original Black-Scholes model)

is incompatible with derivatives prices observed in the market.

1.1 Volatility modeling

Volatility modeling issues have been addressed and studied under different assump-
tions.
(i) Volatility is assumed to be a deterministic function of the time: o = o(t) (see
[65]);
(ii) Volatility is assumed to be a function of the time and the current level of the
stock price: o = o(t,S(t)) (see [35]). The dynamics of the stock price satisfies the

following stochastic differential equation:

dS(t) = uS(t) dt+ o(t, S(t))S(t) dW(t),

where Wi (t) is a standard Wiener process;

(iii) The time variation of the volatility involves an additional source of randomness



represented by Ws(t) and is given by

do(t) = a(t,o(t)) dt + b(t, o(t)) dWs(t),

where Wy (t) and Wy(t) (the initial Wiener process that governs the price process)
may be correlated (see [12] and [36]);

(iv) The volatility depends on a random parameter: o = o(z(t)), where z() is some
random process (see [21], [27], [61], [62], [63]).

In the approach (i), the volatility coefficient is independent of the current level
of the underlying stochastic process S(¢). This is a deterministic volatility model,
and the special case when ¢ is a constant reduces to the well-known Black-Scholes
model that suggests changes in stock prices are lognormally distributed. But the
empirical test in [9] seems to indicate otherwise. One explanation for this problem
is the possibility that the variance of log(S(¢)/S(t — 1)) changes randomly. This
motivated the work [15], where the prices are analyzed for European options using
the modified Black-Scholes model of foreign currency options and a random variance
model. In their works the results from [36], [56] and [64] were used in order to
incorporate randomly changing variance rates.

In the approach (ii), several methods have been developed to derive formula for
a corresponding option price: one can obtain a formula by using stochastic calculus
and, in particular, the Ito’s lemma (see [54]). In [17], an alternative approach was
developed, where a formula is interpreted as the continuous-time limit of a binomial
random model. A generalized volatility coefficient of the form o (¢, S(t)) is said to
be level-dependent. Because volatility and asset price are perfectly correlated, we

have only one source of randomness given by Wi (¢). A time and level-dependent



volatility coefficient makes the arithmetic more challenging and usually precludes
the existence of a closed-form solution. However, the arbitrage argument based on
portfolio replication and a completeness of the market remains unchanged.

The situation becomes different if the volatility is influenced by a second non-
tradable source of randomness. This is addressed in the approaches (iii) and (iv) and
one usually obtains a stochastic volatility model, which is general enough to include
many deterministic models as special cases. The concept of stochastic volatility was
introduced in [36], and subsequent development includes [64], [38], [56], [59] and
[32]. We also refer to [24] for an excellent survey on level-dependent and stochastic
volatility models.

There is yet another approach connected with stochastic volatility, namely, un-
certain volatility scenario (see [12]). This approach is based on the uncertain volatil-
ity model developed in [4], where a concrete volatility surface is selected among a
candidate set of volatility surfaces. This approach addresses the sensitivity question
by computing an upper bound for the value of the portfolio under arbitrary candi-
date volatility, and this is achieved by choosing the local volatility o(¢, S(¢)) among
two extremal values oy, and omay such that the value of the portfolio is maximized

locally.

1.2 Modeling of delayed response

An assumption made implicitly by Black and Scholes in [8] is that the historical
performance of the (B, S)-securities markets can be ignored. In particular, the so-
called Efficient Market Hypothesis implies that all information available is already

reflected in the present price of the stock and the past stock performance gives no



information that can aid in predicting future performance. However, some statistical
studies of stock prices (see [3] and [57]) indicate the dependence on past returns.

The issue of market’s delayed response was raised by Bernard and Thomas in
[7]. They analyzed the drift of estimated cumulative abnormal returns after earnings
are announced. They observed that the returns continue to drift up for good news
firms and down for bad news firms. They provided two possible explanations for
this. Their first explanation suggests that at least a portion of the price response
to new information is delayed. They explain that the delay might occur either
because traders fail to assimilate available information, or because certain costs
(such as transaction costs) exceed gains from immediate exploitation of information
for a sufficiently large number of traders. A second explanation suggests that,
because the capital-asset-pricing model used to calculate the abnormal returns is
either incomplete or misestimated, researchers fail to adjust raw returns fully for risk.
They came to the conclusion that their results are consistent with a delayed response
to information. This is summarized in [6]: “The results of this paper cast serious
doubt on any belief that asset pricing model misspecifications might explain post-
earnings-announcement drift. An understanding of this anomaly appears to require
either some model of inefficient markets, or identification of some cost (other than
transactions costs) that impede the impounding of public information in prices”.
See [11], [28] and [40] for more evidence and analysis of past-dependence of stock
returns.

There were some attempts to model the past-dependence. For example, in [43] it
was obtained a diffusion approximation result for processes satisfying some equations

with past-dependent coefficients, and this result was applied to a model of option



pricing, in which the underlying asset price volatility depends on the past evolution
to obtain a generalized (asymptotic) Black-Scholes formula. It was shown that the
volatility is a deterministic function of time, which is determined by the initial stock
price path. This implies that the option price is given by the Black-Scholes formula
with some parameter of volatility. Therefore, the implied volatility plot for their
model is flat with respect to the strike price.

A new class of non-constant volatility models was suggested in [33], which can
be extended to include the aforementioned level-dependent model and share many
characteristics with the stochastic volatility model. In the model suggested in [33],
the past-dependence of the stock price process was introduced through volatility
given as a function of exponentially weighted moments of historic log-price. This
was done in such a way that the price and volatility formed a multi-dimensional
Markov process. The model produced implied volatility skews of convex and concave
shapes. The direction of the skew was determined by whether the asset price was
below or above its recent average value.

In [37], the model of [33] was extended by analyzing the discrete-time model
that is convergent to the continuous-time model in [33]. They showed that their
model shares many common features with GARCH(1,1) model and that the pseudo
maximum likelihood method can be applied to estimate the parameters involved.

Chang and Yoree [13] studied the pricing of a European contingent claim for
the (B, S)-securities markets with a hereditary price structure. The price dynamics
for the bank account and the evolution of the stock account are described by a
linear functional differential equation and a linear stochastic functional differential

equation, respectively. They showed that the rational price for a European con-



tingent claim is given by an expectation of discounted final payoff, and that it is
independent of the mean growth rate of the stock. Later in [14], they showed that
Black-Scholes formula can be generalized to include the (B, S)-securities market
with affine hereditary price structure.

Mohammed et al. [51] derived a delayed option price formula by solving a PDE
similar to that of Black and Scholes. In their work, the volatility has a form o (S(t —
b)) for some delay parameter b > 0. When deriving the PDE, they assumed that
the option price is a function of the time and the current value of the stock only.

In all papers mentioned above, authors showed that the past-dependence is an
important feature of a stock price process and it should not be ignored. Therefore,
it is imperative to introduce a general framework for its study, which is the main

object of this thesis.

1.3 Structure of the thesis

The subject of this thesis is the study of Stochastic Delay Differential Equations
(SDDE) that arise in modeling and option pricing for security markets with delayed

response. The model for the equity price is the following SDDE

dS(t) = uS(t) dt + o(t, Sp)S(t) dW (1),

where S; := {S(t+0),0 € [-7,0]} and 7 > 0 is a time delay parameter.
The thesis is organized as follows. In Chapter 2, we show the existence of a risk-
neutral probability measure and that the option price is given by the expectation

of a discounted final payoff under this measure. In this Chapter we also derive



a continuous-time equivalent of GARCH(1,1)-model for stochastic volatility with
delay. We consider the GARCH model because it has been proved consistent with
the stock market data and it is widely used in equity modeling.

In Chapter 3, we provide a general approach for pricing European call options
written on a stock whose volatility is a continuous function of time and path S;
of the stock price process. By deriving an analogue of Ito’s lemma, we obtain an
integro-differential equation for a function of option price with boundary conditions
specified according to the type of option to be priced. We solve this equation using a
numerical scheme obtained through a finite-difference approximation of derivatives.
We also provide an alternative way to price options through accelerated Monte Carlo
simulations.

In Chapter 4, we address the issue of parameter estimation. We use the maxi-
mum likelihood method to estimate parameters (excluding time delay 7) that locally
maximize the likelihood function. The delay parameter is chosen according to Akaike
information criterion (AICC). This criterion is widely used in statistical inference for
model selection. However, there is a parameter that cannot be estimated from the
equity price data: the spot risk-free rate r that arises only in a risk-neutral evalua-
tion. We estimate this parameter (or the yield curve) from market prices of options
with different maturities. Our results show that the yield curve is not flat but can
be fit with the Cox-Ingersoll-Ross (CIR) model. We estimate the parameters in CIR
model using the least-squares method.

In Chapter 5, we extend the aforementioned models to include a varying time
delay which depends on the values of the state, i.e. S(¢) and o(t). We prove the ex-

istence and uniqueness of the solution to a general stochastic state-dependent delay



differential equation (SSDDE). We also prove the convergence of the Euler discrete-
time approximation scheme for SSDDEs and establish the order of convergence.
Using this approximation result, we perform Monte Carlo simulations of the stock
price process with state-dependent delay and show viability of the model through a

variety of implied volatility plots.



2 SDDE:s in financial data modeling

In this Chapter, we introduce the general model of (B, S)-securities market with
delayed response. For such a market, we show the existence of a risk-neutral proba-
bility measure and that the option price is given by the expectation of a discounted
final payoff under this measure.

In the second part of this Chapter, we show that a model of (B, S)-securities
market with delayed response arises as a continuous-time equivalent of GARCH(1,1)-
model.

We start with the description of some known facts in the theory of stochastic

delay differential equations (SDDEs).

2.1 Stochastic delay differential equations

For any path z : [-7,00) — R? at each t > 0 define the segment z; : [-7,0] — R¢
by

z(s) :==z(t+s) a.s., t>0, se€[-1,0]

Denote by C := C([—, 0], R%) the Banach space of all continuous paths  : [-7, 0] —

R% equipped with the supremum norm

Inll :== sup [n(s)|, neC,

s€[—7,0]



where | - | is the Euclidean norm. Consider the following SDDE (see [50])

dz(t) = H(t,z;) dt + G(t, ;) dW(t), t>0
(2.1)

a:oquEC

on a filtered probability space (2, F, (F;)>0, P) satisfying the following conditions:
the filtration (F});>o is right-continuous and each 73, ¢ > 0, contains all P-null sets
in F. W (t) represents the m-dimensional Brownian motion.

The SDDE (2.1) has a drift coefficient function H : [0,7] x C — R% and a

diffusion coefficient function G : [0,T] x C' — R¥™ satisfying the following

Hypothesis 2.1 (i) H and G are Lipschitz on bounded sets of C' uniformly with
respect to the first variable, i.e. for each integer n > 1, there exists a constant

L, > 0 (independent of t € [0,T]) such that

[H(t,m) = H(t,m)| + |Gt m) — G(t,m2)| < Lallm — el

for allt € [0,T] and ny,ne € C with ||n1|| < n, [|ne] < n.

(ii) There is a constant K > 0 such that

[H(t,n)| + |Gt n)| < K1+ Inl])

forallt €[0,T] and n € C.

A solution of (2.1) is a measurable, sample-continuous process z : [—7, 7] x Q —
R? such that z|jp7) is (F;)o<i<r-adapted and z satisfies (2.1) almost surely.
In [50] it was shown that if Hypothesis 2.1 holds then for each ¢ € C the SDDE

10



(2.1) has a unique solution z? : [-7,00) x @ — R? with z?|_,o = ¢ € C and

0,7] 3t — z?¥ € C being sample-continuous.
t

2.2 Model of (B, S)-securities market with delayed response

In our model, the bond (risk-less asset) is represented by the price function B(t)
given by
B(t) = Bye™, t € [0, 7], (2.2)

where r > 0 is the risk-free rate of return, and the stock (risky asset) is the stochastic

process (S(t))ie[—rr] Which satisfies the following one-dimensional SDDE

dS(t) = pS(t) dt + o(t, S,)S(t) dW (¢), (2.3)

where Sy(0) := S(t+6),0 € [-7,0], u € R, 0 :[0,T] x C — R is a continuous map-
ping, C is the Banach space of continuous functions from [—7, 0] into R, equipped
with the supremum norm, and W (¢) is a standard Wiener process on a filtered proba-
bility space (€2, F, (F;)i>0, P) for which the filtration (F;);> is right-continuous and
each F; with ¢ > 0 contains all P-null sets in F. To specify a solution, we need to
give the initial data of S on [—7,0]. In this thesis, we assume this initial data
are deterministic, that is, the initial data for (2.3) are given by S(#) = ¢(6) with
6 € [—,0] for some ¢ € C.

The existence and uniqueness of a solution of (2.3) are guaranteed if the coeffi-

11



cients in (2.3) satisfy the following local Lipschitz and growth conditions:

Vn>1 3L, >0 Vtel[0,T] VYm,m € C, |Im| <n, |Ine|l <n:

(2.4)
o (t,m) m(0) = o (t, n2) m2(0)| < Lallm — 2|
and
IK >0 vte[0,T], neC: |o(t,n) n(0) < K(1+ nl). (2.5)
The discounted stock price is defined by
_ S
Z(t) :== BQ)’ (2.6)

Using Girsanov’s theorem (see [46]), we obtain the following result concerning the

change of probability measure in the above market.

Lemma 2.1 For a given process (S(t))—,), under the assumptions

T ¢y L )2
—— ) dt<oo, a.s. 2.7
| Gass >0
1 [T/ r— 7 2
E exp {5/0 (0(t, St)) dt} < 00 (2.8)
1) There is a probability measure P* equivalent to P such that

e[t ()« e

15 its Radon-Nikodym density;

the following holds:

2) The discounted stock price Z(t) is a positive local martingale with respect to P*,

12



and 1s given by

Z(t) = Zyexp {—% /: o?(s, S,) ds + /Ota(s, S) dW*(s)} , (2.10)

where W*(t) := fot % ds+W (t) is a standard Wiener process with respect to P*.

Remarks: 1. The process Z(t) can also be written as
dZ(t) = Z(t)o(t, Sy) dW™(t),
and, in particular, we have
din Z(t) = —%(;2(1:, S)) dt + o2, S,) dW* (2).

2. (2.8) is a sufficient condition for the right-hand side of (2.9) to be martingale
with ¢ in place of T

3. Conditions (2.7)-(2.8) in the lemma are satisfied if there exists 6 > 0 such that
o(t,¢) > d forallt € [0,7] and ¢ € C.

Accordingly, the only source of randomness in our model for the market con-
sisting of the stock S(¢) and the bond B(t) is a standard Wiener process W (t),
t € [0,7], with T denoting the terminal time. This Wiener process generates the
filtration F; := o{W(s) : 0 < s < t}. It can be shown that the P*-completed
filtrations generated by either W, W*, S or Z all coincide. This is useful since S is
the observed process. See [31] and [39] for details.

A process m = (u, B)icjo,r) is called a trading strategy in oy shares of bond and

‘l
B, shares of stock if 7 is predictable and (fot B2 d|Z, Z]s) te [0, T, is locally

13



integrable under P*, where [Z, Z]; is the quadratic variation. The strategy = is
admissibleif it is self-financing, i.e. the discounted value process X;(7) := ay+ 5, Z(t)

solves

X,(1) = Xo(r) + /0 Bdz,

and if, in addition, X;(n) is a nonnegative martingale under P*. A contingent claim
C is a positive Fpr-measurable random variable. We call a contingent claim attainable
if there exists an admissible strategy 7 that generates C, i.e. Xr(w) = e™""C. For
such a claim C, ¢g := Xy(n) = Ep-(e7"TC) is called the price associated with C
and this is the only reasonable price for C at time 0 if we assume the absence of
arbitrage opportunities. For times ¢ between 0 and T, the fair price of the claim is
given by ¢, = €"'X,(n) = Ep-(e"THC | F,). A market is said to be complete if

every P*-integrable claim is attainable.

Theorem 2.1 (Completeness)

(i) If for any given S(t) the discounted stock price process Z(t) is a martingale under
P*, then the model (2.3) is complete;

(i1) Under condition (2.7) for every given S(t), the model (2.3) is complete and the

initial price of any integrable claim C is given by
¢o = Ep-(e77C), (2.11)

and the price of the claim at any time 0 < t < T is given by ¢, = Ep-(e"T-9C | F,).

The proof of this theorem is standard and is similar, for example, to the proof of
corresponding theorems in [31] and [39].

Let the so-called market price of risk process be given by A(t) := Jfg; fort > 0.

14



Changing the probability measure in equation (2.3) for stock price and using Ito’s

lemma lead to

InS(t) = In S(0) + /0 (r — 50°(u,5) du+ /O o(u, S) dW*(u),

or, equivalently,

In S(f(—t)q-) =rr — %/t_r o’ (u, S,) du +/ o(u, Sy) dW* (u), (2.12)

t—1

where W*(t) = fot A(s) ds + W (t). The expression (2.12), as well as the following
expressions in terms of the physical measure P, will be needed later for deriving a

continuous-time analogue of GARCH(1,1)-model for stochastic volatility:

t

mS® / t {A(u)a(u,su)—%&(u,su)] du + / o (u, Su) AW (u).
o o (2.13)

We conclude this subsection by showing that S(¢) > 0 a.s. for all ¢ € [0,7],

when ¢(0) > 0. Define the following process:
¢
N(t) := ut +/ o(s,Ss) dW(s), te€[0,T].
0

This is a semimartingale with the quadratic variation (N)(t) = fot o?(s,Ss) ds.

Then, from equation (2.3) we get

dS(t) = S(t) N (1), S(0) = p(0).

15



This equation has a solution:

() = w0 exp { N (0 - )0
— (0) exp {ut + /Oto(u, S,) AW (u) — %/Ot o2(u, S, du}.

From this we see that if ¢(0) > 0, then S(¢) > 0 a.s. for all ¢ € [0, T].

2.3 A continuous-time GARCH model

In this section, we show that a model of (B, S)-securities market with delayed re-
sponse arises as a continuous-time equivalent of GARCH(1,1)-model. The GARCH
models are proved consistent with the stock market data and are widely used in
equity modeling (see [10]).

We continue to consider the risk-neutral world where the stock price S(¢) has

the dynamics given by
dS(t) = rS(t) dt + o(t, Sy)S(t) dW*(t),
where W*(t) is defined in Lemma 2.1 and S;(6) = S(¢t + 6),6 < 0. We consider the

following equation for the variance o?(t, S;):

do?(t, S) o 2

7ot [/t_Ta(s,Ss) dW(s)| — (a+7)a°(t, Sy). (2.14)

Here, all the parameters «, 7, 7,V are positive constants. The Wiener process W (¢)
is the same as in (2.3). Note that the solution of (2.14) depends on the history

of S(t) from time 0, which does not fit the framework of (2.3). Considering o2 a

16



variable makes equations (2.3),(2.14) form a 2-dimensional system of SDDEs and the
Hypothesis 2.1 applies. Later, in Section 3.2, we consider a simplified version (3.12)
of (2.14) that fits into framework (2.3). This framework is particularly convenient
when deriving an option pricing PDE (see Section 3.1).

Note that our model is different from the continuous-time analogue of GARCH
model given in [52]. The latter one is sometimes called GARCH diffusion, mainly
because of another Wiener process appearing in the equation for volatility. However,
ours is more in line with the original spirit of GARCH, since it has a longer “memory”
in the volatility term. And most importantly, our model contains only one source of
randomness, i.e. the Wiener process in the equation for stock price (for derivation
see Section 6.1 of the Appendices).

Taking into account (2.13), we note that equation (2.14) is equivalent to

2

dO’Q(t, St)

a VT % IECIUER /t (A(w)o(u, Su) — %Uz(u, S,)) du

St—r)

— (a+7)%(t, Sy).

-7

(2.15)
Using risk-neutral measure argument, we obtain from (2.14) that
dO’z(t, St) _
a
- t t 2
=~V + . {/ o(s, Ss) dW*(s) — / Auw)o(u, Sy) du} — (@ +7)a?(t, Sy)
t—1 t—1

=~V + e [/tt o(s,Ss) dW*(s) — (u — 7‘)7':|2 — (a+7)d%(t, Sy).

T -7

Taking the expectations under risk-neutral measure P* on both sides of the equation
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above, and denoting v(t) := Ep«[0?(t,S;)], we obtain the following deterministic

delay differential equation

t

=V +oar(p—r)*+ %/ v(s) ds — (a+ y)v(t). (2.16)

t—7

dv(t)
dt

Both the stochastic process o?(t,S;) and the deterministic process v(t) have the

same initial data oZ(¢) on the interval [—7, 0]:
o’(t) =v(t) = o3(t), te[-7,0]

Note that (2.16) has a stationary solution v(t) = X =V + ar(u — r)?/y.

An unusual result is that equation (2.16) for the expectation of the squared
volatility under the risk-neutral measure P* contains the drift parameter p. In
standard equity option pricing problems the drift parameter plays no role, disap-
peared through the Girsanov transformation (see Lemma 2.1). However, our model
inherited this property from the discrete-time GARCH(1,1) model where the drift

parameter enters the equation for volatility:

In(S,/Sn-1) =m+ 0., {&} ~iid. N(0,1),
2=V +a (On_1§n-1)2 +(1-a—-79)d2,

=~V +a(In(Sp_1/Sn_2) —m)’ + (1 —a—7)o2_,.

It seems nontrivial to have an explicit formula for a solution of (2.16) with arbitrar-
ily given initial data. However we can describe asymptotic behaviors of solutions of

(2.16) by substituting v(t) = X + Ce” into (2.16) to obtain the so-called character-
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istic equation for p (see [30])

po=———e " —(a+7)p
T T

The only non-zero solution to this equation is p &~ —v. Then, we have v(t) ~
X + Ce ™ for large values of ¢, and X is asymptotically stable.
These observations can be directly checked using numerical simulations for equa-

tion (2.16). The numerical scheme is defined as follows.
a(At)? a(At)?

v; =y XAt + (1 +
-

- (Ck + ’}/)At)’l)i_l +

(Ui_g + ...+ Ui—l)a

where v; = v(¢;) and {t;} is a time grid with a mesh of constant size At. A typical
solution is shown in Figure 1. Figure 2 shows the dependence of the terminal
expected variance v(7) on delay 7 for a typical constant initial value.

Also see Table 1 for implied volatility structure in the market with volatility
described by (2.14). If the data in the table were plotted against the strike price
we could see the U-shaped plot. Note however that the market option prices are
observed to have a similar pattern. This is an important observation in support of

our continuous-time GARCH model.
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3 Option pricing and numerical simulations

In this Chapter, we provide a general framework for pricing European call options
written on a stock whose volatility is a continuous function of time and the path
S; of the stock price process. By deriving an analogue of Ito’s lemma, we obtain
an integro-differential equation for a function of the option price with boundary
conditions specified according to the type of option to be priced. We solve this
equation using a numerical scheme obtained through a finite-difference approxima-
tion of derivatives. We also provide an alternative way to price options through

accelerated Monte Carlo simulations.

3.1 General option pricing framework

The stock price value is assumed to satisfy the following SDDE:
dS(t) =rS(t)dt + o(t, S;)S(t)dW (t) (3.1)

with continuous deterministic initial data Sy = ¢ € C = C(|—7,0], R), where o
represents a wvolatility, which is a continuous function of time and the elements of
C. Note that the Wiener process W corresponds to W* from the previous Chapter.

As it was mentioned in the Section 2.1, the existence and uniqueness of a solution
of (3.1) are guaranteed if the coefficients in (3.1) satisfy the following local Lipschitz

and growth conditions:

Vn>1 3L, >0 Vte[0,T] Yn,m e€C, [m| <n, ||n| <n: 5.2
3.2
o (t,m) m(t) — o(t,m2) m()] < Lallm — nell
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and

3K >0 Vtel0,T], neC: |o(t,n) nt) < K1+ |n]). (3.3)

Note that the stock price values are positive with probability 1 if the initial data
are positive, that is, ¢(f) > 0 for all § € [—7,0].
As shown in Section 2.2, the fair price of a European call option with maturity
T and strike price K is given by the conditional expectation of the discounted final
payoff
F(t) = E [e "™ Y max(S(T) — K,0)| 7] .

More generally, if C is any contingent claim, then the associated option price is
F(t) = E[e"@9C | F]. Now using the Markov property of solutions of SDDEs
(see [50]), we deduce that this expectation is a functional of S; (rather than a
function of S(t), which is true for stochastic ODEs). Therefore, the option price is
given by a functional F (¢, S;).

We are primarily interested in an option price value, which is assumed to depend

on the current and the previous stock price values in the following way:

F(t,S)) = / 0 e H(S(t+0), S(t), t)df, (3.4)

T

where H € C%%1(R x R x R,). Such a representation is chosen since it includes
sufficiently general functionals for which an analogue of Ito’s lemma can be derived.
If H is chosen appropriately, these correspond to option prices for the contingent
claims C = F(T, St). We will need to derive conditions on H for F' to be such an
option price. Note that even if a European call option does not satisfy condition,

we may still be able to precisely price other options that approximate this call.
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Lemma 3.1 Suppose a functional F' : R, x C — R has the following form

Fi.s) = [ n0)H(0), 5.0), 00

-7

for H e CO%%'(Rx Rx R.) and h € C'([-7,0],R). Then
t t

F(t,S;) = F(0,¢) +/ AF (s, Ss)ds-l-/ o(s,S5)S(s)BF (s, Ss)dW(s), (3.5)
0 0

where for (t,z) € Ry x C,

AF(t,x) =h(0)H (2(0),z(0),t) — h(—7)H (x(—7), z(0),t)—

(
- / U OV H@(0), 2(0),)d0+ [ h(O)LH(x(6), 2(0), £)do.

and

LH(z(0),z(0),t) =rxz(0)Hy(z(0), z(0),) +

+ H(z(0), z(0), 1),

where H] i =1,2,3, represents the derivative of H(x(0),z(0),t) with respect to i-th

argument.

Proof: We defer the proof to the Section 6.2 of the Appendices.

In what follows, we assume that a risk-less portfolio consisting of a position in the

option and a position in the underlying stock is set up. In the absence of arbitrage

opportunities, the return from the portfolio must be risk-free with the spot rate
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7. The portfolio IT has to be risk-less during the time interval [¢,¢ + dt] and must
instantaneously earn the same rate of return as other short-term risk-free securities.
It follows that dII(¢) = rII(¢)dt and this will be used in the proof of the following

theorem.

Theorem 3.1 Suppose the functional F' given by (3.4) with S(t) satisfying (3.1) is
an option price and H € C**'(Rx Rx R,). Then, H(S(t+6),S(t),t) satisfies the

following equation

0
0= H‘gzo — €_T0H|9:_7— +/

-7

o0 (Hg +rS()H, + %02(1,‘, St)SQ(t)Hé’z) do (3.6)

for all t € [0,T].

Proof: To construct an equation for F', we need to consider a portfolio which consists

of —1 derivative and BF'(t, S;) shares. Then, the portfolio value II(¢) is equal to
(t) = —F(t,S;) + BF(t,S:) S(t),
and the associated infinitesimal change in the time interval [¢,¢ + dt] is
dll = —dF + BF dS.

We should point out here that in the last statement we suppose that (BF) is held
constant during the time-step dt, and hence term d(BF') is equal to zero. If this

were not the case then dIl would contain term d(BF).

23



Using (3.5) and (3.1), we obtain
dll = —AF dt — oSBF dW + BF(rS dt + oS dW).
Consideration of risk-free during the time dt¢ then leads to
dll = rII dt,
that is,
—AF(t,S;) + rS(t)BF(t,S;) = r(—F(t,S;) + BF(t,5;)S(t)),

or

AF(L,S,) = rF(t, ).

Therefore, the equation for H(S(t + 6), S(t),t) becomes

0
0=Hlpeo— e ""Hlo—_, + /

-7

1
el (H{3 +7rS(t)Hy + 502(15, St)SQ(t)Hg2) de.

This completes the proof.

Remark: Solving equation (3.6), we can determine the trading strategy that repli-
cates the option price. Therefore, our assumption of the option price in the form
(3.4) holds whenever there is a solution to the equation. Later in Section 3.3, we
construct the solution when the volatility is given by o (¢, ¢) = o(t, (0), p(—7)) for
¢ € C. Note however that there is no solution for arbitrary choices of o(t, ¢). This

becomes evident when we pick some H and solve equation (3.6) for o®. Therefore,
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the class of models for which the price can be found is quite restricted but more gen-
eral than o(t, p(0), o(—7)). It does not contain, however, o(t, v(0), o(—71), ©(—7))
for 7 # 7.

Consider a European call option with the final payoff max(S — K,0) at the
maturity time 7" (see [35]). Then problem (3.6) has the boundary condition at the
time T

F(T,Sr) =max(S(T) — K,0), (3.7)

which can be approximated by its functional analogue
1 [0
F(T, 87) =~ / max(e ™Sy (0) — K, 0)dd, (3.8)
where 1/7 is a normalizing factor such that F'(T, Sy) — max(S(T)—K,0)as 7 — 0.

3.2 A continuous-time GARCH model for volatility

with bounded memory

In this section, we introduce another continuous-time version of GARCH(1,1) model.
It has a connection with the model derived in Section 2. However, as we shall see
later, the new one is more suitable for the option pricing framework introduced in
the previous section.

Similarly to (2.14), assume o?(t) satisfies the following equation

dUdt(t) =V + %lnz (%) _ (a +’)’)0’2(t), (39)

where V' is a long-run average variance rate, « and 7y are positive constants. Here,
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S(t) is a solution of the SDDE (3.1) with positive initial data ¢ € C.
Consider a grid —7 =1, <t ;1 < - <th=0<1t <--- <ty =T with the
time step size A; of the form

A =

T
l I

where [ > 2. Then a discrete time analogue of (3.9) is

0-2 = ny —+ %1112(5”_1/571_1_1) + (1 - — 7)02 11

where 02 = ¢%(t,) and S,, = S(t,,). Note that the process described by this difference
equation is a generalization of the GARCH(1,1) (with returns assumed to have

conditional mean zero),

02 =4V +aln®(S,_1/Sn o) + (1 —a— )2 . (3.10)

Now, using a variation of constants formula for (3.9) we obtain

2 _ WV 20y _ WV ani—to) L & /t (@it 2 [_SE)

(3.11)

for ¢ty > 0. It is then natural that we consider the following expression for variance:

, (3.12)

— e~ (at+7)(t—to)
F2(t) = o?(ty)e~@tN(t—to) 4 {’)/V + 2 ( S() )] 1-e
T

S(t—r1) a+y

since functions 6% and o2 are close to each other in the following sense:

o?(t) = a*(t) + o(|t — to]) ast — to.
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We shall use the model (3.12) as a model for volatility in option pricing that fits

the framework (3.1).

3.3 Finite-difference method for the general equation

In this section, we show how to solve the general equation (3.6) for evaluation
function H, which will allow us to find the value of European call option price
in a (B, S)-market with delayed response (2.2)-(2.3). We only consider the case
o(t, o) = o(t,9(0),p(—7)). In all other cases, the technique here cannot be applied.

Let’s consider a continuous function ¢ € C([—7, 0], R) with ¢(0) = z, o(—7) = v,
x,y € R. Then, the system (3.6) in terms of continuous function S; = ¢ will have

the following form

0
0= H(z,z,t) —e”H(y,x,t)—i—/

—T

1
e "l <H£ +rzH, + 502(75, c,o):vQH;'x) do,

/0 e " H(p(0),z,T) df = max(z — K, 0).

T

(3.13)

Our main objective now is to solve system (3.13) for the function H(y, z,t). Let us
consider the function ., (0) = z+ (y — z)(e " — 1)/(e’™ — 1), 6 € [—,0], which
connects y and z. After substituting ¢, into (3.13) and changing the integration

over the variable 0 to the variable s = ¢,,(6), we obtain the following:

x_

Y (H(,

T
/
Y

/ H(s,z,T)ds =
y

0= ,t)—eTTH(y,:L’,t))—F

8

,7’:

1
Hz + T.’EH; + 50'2(75, (pxy)-fQng) (S,ﬂ?, t) dSa (314)

N

(z — y) max(z — K, 0),

Y| =
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where 7 = (¢"” — 1)/r. Note that equation (3.14) is equivalent to equation (3.13) if

functional the o (¢, ) is a function of ¢, ¢(0) and ¢(—7), that is when

a(t, ) = o(t, (0),(=7)).

Note, however, that the volatility given by (3.12) satisfies this condition.
Equation (3.14) is an integro-differential equation and it can be reduced to a

PDE using the following substitution:

flz,y,t) = /wH(s,x,t) ds,
y

and the PDE has the following form:

_r—y(_9of OFY O or  of
0= = < ay|y:w+e 6y)+6t+m<6x+ay|y”)+

1, 2 (0°f 0* f 0 f
+ 57 (t,z,y)x <8;v2 + 28x8y‘y:w + o ly=z

(3.15)

subject to boundary conditions

—_

fli=r = =(z — y) max(z — K, 0),

\"

f‘yzw =0.

An analytic solution to equation (3.15) seems difficult to find. One way to solve it
is to consider the finite-difference numerical approximation scheme for derivatives

in (3.15). We obtain the following iterative updating scheme as we move back in
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time from 7T':

iy = (1= 2ai5) fij + cijlfijer — fij—] + (bi + aig) firr
+(=bi + aij) ficrj; + (—=dij + bi + a;j) fiita (3.16)

+ (dij — by + aij) fiic1 + (—aij/2) [ fisri-1 + fic1i41)s

where the coefficients are defined by

a. . =— 0'2 xzi b‘ —_— rx.ﬁ

BT TR (Ag)?) CTUTIAT

o ermi— 1y At P Rk At
T T Ay T T E aAr

fij = f(zi,2j,t) and fi$" = f(x5,25,t — At). The scheme (3.16) seems stable as

(At,Az) — 0 if the following condition holds:

At

< 1.

See Table 2 and 3 for numerical results on the finite-difference method (3.16) applied
to continuous-time GARCH model (3.12). The algorithm is given at the end of this

thesis as Program 1.

3.4 Option pricing via accelerated Monte Carlo

Here we review some facts from Section 3.1 on option pricing in the market where
the stock price follows (3.1) with the volatility given by (3.12). The fair price of the
European option with terminal payoff ¢(S(T)) is given by the following conditional
expectation

E[emTVg(S(T)) | Fi] - (3.17)
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Using the Markov property for (3.1), the expectation is a functional of S; := {S(u) :
t — 7 < u < t}, which we denote F(t,S;).

We seek F'(t,S;) in the following form

F(t,8) = / " eTH(S (4 0), S(0), )46, (3.18)

T

where H € C%*'(R x R x R,). Then, H(S(t + 0), S(t),t) satisfies equation (3.6):

0= L(t, St) =
0
Hlgp—o— e " Hlp-, + /

-7

1
e " (Hz'; +7rS(t)Hy + 502(75, St)SQ(t)ng) dp.

To find the option price F'(t,S;), we can solve the equation subject to boundary
condition

F(T, Sr) = g(S(T)).

A solution to equation (3.6) seems hard to find in a closed form. However, we can
employ a finite difference scheme to solve the equation numerically (see Section 3.3).

On the other hand, we can use Monte Carlo simulation of independent realiza-
tions S (t) of the process S(t) (discretized using the Euler scheme, see [45]) and

approximate the expectation (3.17) with

N
1
F(t,5) ~ + D e g(SM(T)). (3.19)
n=1

Then, by the central limit theorem, the option price F'(t,S;) belongs to a confidence
interval whose radius is proportional to the square root variance of the estimator.

Normally, the variance is large and a substantial number of simulations are required
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to obtain a desired precision.

Both methods of finding the option price are more or less equivalent in terms of
the computational efficiency. However, we can increase the efficiency in the second
approach by reducing the variance of the estimator. With reduced variance, a
smaller simulation time would be needed to get the desired precision of the estimator
(3.19).

There is an efficient variance reduction technique, the so-called importance sam-
pling for diffusions (see [53]). Employing the importance sampling variance reduc-
tion technique requires some approximation of the function F'(¢,S;). Using equation
(3.6), we can approximate the function and then use this approximation to derive

a more efficient Monte Carlo estimator similar to (3.19).

3.4.1 Importance sampling for diffusions with delay

Here we adapt a general formulation of the importance sampling technique intro-
duced in [53]. Given a scalar square integrable F;-adapted process of the form

h(t,St), we define the following process

Q(t) = exp { /0 (. S.) AW (1) + - /0 12w, 5) du} .

If F[Q(t)~'] = 1, then (Q(t))o<t<r is a positive martingale and we can define an

equivalent to P* probability measure Q through Radon-Nikodym density
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By Girsanov’s theorem, the process defined by
t
We(t) = W(t) + / h(u, Sy) du
0

is a standard Wiener process under the measure Q. With respect to this new

measure, the option price defined by F'(t,S;) can be written
F(t,5) = E° [e 7T g(S(T)QT) | 7.

We can estimate the expectation by

L ey (1)) (1), (3.20)

whose variance may be smaller than the variance of the estimator (3.19). Determin-
ing the function A(¢, S;) that makes the variance smaller (or the smallest possible)
is the sole goal of the importance sampling method.

The stock price process S satisfies the following equation in terms of the new

Wiener process W<
dS(t) = [r — o(t)h(t,S,)] S(t) dt + o(t)S(t) dW(2).

Using Lemma 3.1, we can write an equation for F'(¢, S;)

dF(t,S;) = [L(t,S;) + rF(t,S;)] dt+o(t)S(t) /0 e " HY(S(t+0),S(t),t)do dW (t),

-7
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where operator L(t, S;) is defined by (3.6). Since L(t, S;) = 0, we have

d(F(t, 5)Q()) = rF(t, S)Q(1) di+

+ (F(t, Si)h(t, S;) + o (t)S(2) /0

—T

PO H(S(0+0), 5(0,000) Q) O,
which leads to the following expression for variance

VarS((S)QD) = B2 [ 00200

0

X [F(t,St)h(t,St)—i-a(t)S(t) / e—rf’H;(S(He),S(t),t)de] dt,

—T
as opposed to

0

Var® (g(S(T))) =E” / "t [aa)sm / e HL(S(t + 6), (1), t)do] .

-7

Therefore, the function A(t, S;) that makes the variance of the estimator (3.20) zero
is
oS [°

5D = =T /_ T HL(S(t + 0), S(£), £)db. (3.21)

Note that we could make the estimator of F'(¢,S;) “perfect” only if we knew the exact
expression for F(t, S;). Fortunately, it is still possible to get a “good” estimator by
approximating the function F'(t,S;) and thus reducing the variance of the original

estimator.

3.4.2 Option price approximation and variance reduction

Consider a European call option with maturity 7" and payoff ¢(S(7)) = max(S(T") —

K,0). The fair price for this option at time ¢ when the stock price process follows
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GARCH model (3.12) is given by
F(t,S) =E [e™ " P max(S(T) — K,0) | F].

This expectation can be estimated with (3.19), whose variance can be reduced using
the importance sampling method. As mentioned in the previous section, we need
to get an approximation to the option price in order to define a new measure that
reduces the variance of estimator.

We approximate the option price F(¢,S;) with the Black-Scholes call option
price. Observe that the GARCH volatility (3.12) is mean reverting to the level v/V.
We can use this fact to approximate option price F(¢,S;) with Black-Scholes price
Fgs(t,S(t)), where constant volatility v/Vgg is used. Then similarly to (3.21), we

choose function h(t, S;) as

o(t)S(t) OFgs(t,S(1))
; .

Mt 5 = ~Ftsw) 09

Although, it seems that the derivation of h depended on the use of H, it is still
useful in the general case of F'(¢,S;). See [22] and [23] for the applications of similar
h to stochastic volatility models.

In Figure 3, we show how the radius of 95% confidence interval of the option price
estimator (3.20) varies as different values of Vg are chosen. Note that the minimum
radius 0.0195 is reached at Vgg close to the long-run variance rate V = 0.0141. The
corresponding radius for the regular estimator (3.19) is 0.1328, and thus we reduced
the radius of the confidence interval 6.8 times. This is equivalent to 46.4 times

reduction of a number of realizations required to get a desired precision of the
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estimator.

The efficiency of the variance reduction can be judged from the following empir-
ical viewpoint. If we were to simulate a Monte Carlo estimator of the call option
price when the stock price volatility is constant, we could choose the estimator with
theoretically zero variance since the option price in this case is known and it is given
by the Black-Scholes formula. However, there is a discretization error in approxi-
mating the stock price process, and therefore the variance of the estimator is not
zero anymore but close to it. We can use this lowest possible variance for a given
time discretization step as a benchmark for the variance reduction in our model
(3.1), (3.12).

The radius of the confidence interval corresponding to the lowest possible vari-
ance in the constant volatility case is 0.0135. Since for our model it is 0.0195, the
efficiency of the variance reduction seems to be very good. Moreover, this shows
that using a relatively low-order approximation of the option price, we can get a
significant variance reduction. This fact was observed in [23] and it is confirmed by

our numerical results.
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4 Parameter estimation

Here we develop an estimation technique for some parameters involved in the ana-
logue of GARCH(1,1) model introduced in Section 2.3. These are drift coefficient p,
time delay 7, and weights «, 8 and . The technique involves Maximum Likelihood
(ML) method in combination with Akaike information criterion (AICC) applied to
the equity price data. This criterion is widely used in statistical inference for model
selection. However, there is a parameter that cannot be estimated from the equity
price data: the spot risk-free rate r that arises only in a risk-neutral evaluation.
We estimate this parameter (or the yield curve) from market prices of options with
different maturities. Our results show that the yield curve is not flat but can be
fit with the Cox-Ingersoll-Ross (CIR) model. We estimate the parameters in CIR

model using the least-squares method.

4.1 Drift estimation

Parameter p is unobservable, but it can be estimated from observations of S(u),

u € [0,¢]. The maximum likelihood estimator of y is given by (see [1] and [2])

jilt) = % /O S~ (u)dS (u).

Or, in terms of discrete-time observations over an increasing time-grid:

% /0 S~ w)dS(uw) = lim Y S7H(j—1)27") [S(it2 ™) — S(( — )27

=400 <=
Jj=1
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The statistical properties of fi(t) can be easily derived. Namely, since

%(5) = pdt + o(t, S)AW (2),

we have

5 1/t
) =+ / o (s, S.) AW (s),

and hence [i(t) is distributed as

1 t
N (u,t—Q | e su)du),
0

where the expectation Epo?(u, S,) can be found explicitly using (2.14). This means
that fi(¢) is unbiased and mean-square consistent at the sampling interval [0, ¢] as
t — +oo. We note that t plays the role of the “sample size” in its numerical
meaning, while 2" is the numerical “computational size”.

For a sample set of parameters, we can compute the variance of the estimator
of 1 and therefore a confidence interval for the true parameter. In our calculations,
it seems that the size of the confidence interval is very large (e.g. [0.05,0.10]) even
when the data span years of observations. This means that we have to either find a
better estimator with smaller variance or show that the parameter p does not affect
the final outcome of our analysis (e.g. option price). The latter can be shown quite
easily. In Table 6, we present numerically computed European call option prices for
different values of parameters r and u. Observe that the option prices are practically
not affected by the parameter i. Therefore, for the purposes of option pricing, we

keep parameter u fixed at some reasonable value, e.g. 0.05.
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4.2 Time delay and other parameters estimation

In this section, we show that the maximum likelihood (ML) method can be used to
estimate parameters «, 3, v and V. Parameter [ takes discrete values and has to be
treated differently. We show that Akaike information criterion (AICC) can be used

to select [.

4.2.1 Consistency and asymptotic normality of the ML estimators

For the simplicity of presentation, in this subsection we use notation x; for z(¢).

Suppose that we observe sequence {y;} with

Y = Mo+ €ot, Eot = gthé{Qa
(4.1)

o
hot = wo + 705&_1 + Bohot-1,

where Ey_q1 = Zi::l Eoi—k, | > 11is a fixed integer, {& }c7 is i.i.d. N(0,1). Let F; be
the o-algebra generated by {y, yi—1,...}. We define the compact parameter space

0={0=(pwapB) €l-mm]xw ' wxlel—axbl-b:a+tp<1}

for some positive constants m, w, a and b. We assume that the true parameter

0o = (o, wo, o, Bo) is in the interior of ©. For any parameter, § € © we define

Yo = P+ &y,
A o . l (4.2)
hy = w+ 75}2_1 + Bhi—1, &= fot—k,

k:l
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with the initial data given by ho = w/(1 — ) and {h;} i 1<1<_1, chosen arbitrarily.

This gives the convenient expression for the variance process

~

-1
. w o i o2
hy = m + 7;5 &l

Since the conditional distribution of {¢;} is the standard normal, the log-likelihood

function takes the form (ignoring constants)

1 « fo . e?
= 55 Z ), where [,(f)=— (ln h(0) + ﬁt(9)> :

It will be convenient to work with the unobserved variance process

w O i o2
hy = 1_6+7;55t—i—1

and the unobserved log-likelihood function

LTZ ), where ztw)z—(lnht(@”hf(te))‘

The process h;(#) is the model of the conditional variance when the infinite past

history of the data is observed.

Lemma 4.1 For all 0 € O, the expectation

dhy Ohy .,
E {% 00"t }

erists and is a positive definite matriz.

We refer to [47] for the proof.
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Theorem 4.1 E[L7(0)] is uniquely mazimized at 6.

Proof: Consider

ElL(0)] - Elly(6,)] = E |In 12 — & 4 S0
¢ +(bo e e el

Since €2 = &2, + 2(po — p)eor + (o — 1)?, using the law of iterated expectations we

obtain

EL(0)] - Ell(00) = F [ln e M] <0,

where the equality takes place when In(hg/h;) = 0 a.s. and p = po. The former

expression is equivalent to

(6 — o) (%ht_l) =0 as.
6=~

for some 6* € ©, which occurs if and only if # = 6, by Lemma 4.1. Therefore,
E[L7(0)] is uniquely maximized at 6.

We can then state two theorems, and we again refer to [47] for details.

Theorem 4.2 Let O be the solution to maxgee Lr(0) and Or the corresponding

solution to maxycg ij(H). Then 07 — 0y and O — 0, in probability as T — co.
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We define the following matrices:

R {a?zt(eo)} |

0000
Bht aht 1 a‘(‘:t 85t
TZ L 90 06" TZ t 90 99"
Oh; Oh Oey Oe
—2 vt t _1 vetg Uct
2T Z 90 00" T Z 90 90"

8ht 3ht:| L E |:h,t_1 36,5 (96,5]

- 2 =
A= E [h 80 06" 06 oo’

2

Theorem 4.3 The following statements hold:
(a) VT(8r — 6p) ~ N(0, Ag") asymptotically as T — oo;

(b) Consistent estimator of Ay is given by Ar evaluated at 0.

4.2.2 Numerical results

We now show how to use the maximal likelihood method to estimate the time delay.
In particular, we choose values for the parameters that maximize the chance (or
likelihood) of the data occurring, and then use chosen values of parameters to test
how our model (of market with delayed response) works.

Recall that the discrete-time model for volatility in the market with delayed

response is

! 2 (4.3)
o2 =w+ % (Z En_i> + Bo? |,

where « + 8+ v = 1 and w = V. Parameter p can be eliminated by assigning

41



= (Z/vaﬂ yr)/N. Parameter [ > 1 represents the delay. For | = 1, we obtain
GARCH(1,1) model. The correspondence between continuous-time parameter of
delay 7 and its discrete-time analogue [ is given by 7 = [A, where A is the size of
a mesh of the discrete-time grid. The probability distribution of ¢, conditional on
information up to time n — 1 is assumed to be normal.

The likelihood function is given by

Yoo €5
L(e, B,w, 1) = E [\/gon P (20% >] 7

where o, is the function of «, 8, w and [ (parameter y can be eliminated due to

equality above). Our task is to maximize the product subject to constraints:

>0, 20, (21,

a+p<1

Taking logarithms, we see that this is equivalent to maximizing (I is fixed for now)

2
[ n:|
2
g
n=1 n

Mz

o, B,w,l) =

with 62, n > [ + 1, explicitly given by

0121 = wA,(8) + aBn(B) + Ru(B),
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where

A (B) =14+ B+ B>+ ...+ 8"

Bn(ﬁ) = VUp_1+ Un—Qﬂ + ...+ ’Ulﬂn_l_l,

R’n(ﬁ) = Ulﬂn_la
= 2
Up = 7 (z 5n—i) s
=0

and 02 =¢2 forn=1...1.

For each fixed [, we maximize the likelihood function with respect to the other
parameters. Thus, we obtain &(1), 3(1) and &({) for | = 1...lmax. Then, we minimize
AICC function to choose order I € [1, liyax]:

2(0+3)N

AICC(a(1), B(1), (1), 1) = —21n L(&(1), B(1), &), 1) + NoI-1

This function is an AICC function for ARMA(1+1,1) model. Note that the discrete-
time model (4.3) is very similar to GARCH(1,1) model, the only difference is the
presence of the cross-product terms in the equation for volatility. And as mentioned
in [10], any GARCH(p,q) model can be considered as an ARMA(p+q,q) model.
Therefore, it is reasonable to assume that AICC function for our model is similar
to that for ARMA(1+1,1) model.

We search iteratively to find parameters that maximize the likelihood using a
combination of direct search method and variable metric method, known as the
Broyden-Fletcher-Goldfarb-Shanno variant of Davidon-Fletcher-Powell maximiza-
tion algorithm (see attached Program 2 and [55]). Table 4 shows the results and

performance of the algorithm applied to collections of daily observations of S&P500
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index during 1990-1993.

The algorithm seems to be stable in almost all cases, except for the year 1992
where the maximum of likelihood function was achieved on the boundary of the
feasible region, defined by the constraints and, therefore, cannot be accepted as a
local extremum.

It is interesting to compare estimated parameters for different years. The annual
pools of data showed little similarity, on the contrary to the results for 1992-93 and
1990-93, where the estimated parameter values were very close. This is a strong
argument in favor of the results for larger datasets.

These results can be checked by looking at the autocorrelation structure of {e,},
i.e. correlation of series {¢,} and {e,,,} for each lag k > 1 (see Table 5). Really, as
the table shows, the highest (by absolute value) autocorrelation for {s,} is at the
lag 7, which indicates the consistency with results based on the ML-AICC method.

Another test of consistency of our results is to look at how our model for o2
removes autocorrelations in {¢2}. For that purpose, we consider autocorrelations
for {2} and {€2/02}. There is an efficient way to check it by using Ljung-Box

statistic for both series. Its value is defined by

15
N +2
Ny p 2 = 160.64,

N+2 ,

where N = 1006 is the total number of observations, k£ is the index for lag and
@, Oy, are the autocorrelations of {¢2} and {€2/02} resp. For 15 lags in total, zero

autocorrelation hypothesis can be rejected with 95% confidence when the Ljung-Box
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statistic is greater than 25.

From these values, we see that there is a strong evidence for autocorrelation
in {2}, since its Ljung-Box statistic is over 160. And for the {2/02} series the
Ljung-Box statistic is about 14, suggesting that the autocorrelation has been largely
removed by our model (4.3) with parameters obtained by ML-AICC method.

Note that to validate our model (4.3) we can apply the estimation technique
to other pools of S&P500 data (say, for years 1994-1997). We can use a new set
of parameters to price options in comparison with market option prices, thereby

confirming the model. This is a subject for future investigations.

4.3 Fitting option price data with CIR-GARCH model

Parameters of our stock price model (3.1) with o defined by (3.12) are

V =0.0141, «=0.0575, v=0.0539, 7=0.028, o2=0.0111.

These parameters were estimated from S&P500 index data for years 1990-1993 (see
Section 4.2.2) using the maximum likelihood method. The only parameter that we
could not estimate from the index data was the risk-free rate r. In this section, we
use the S&P500 option trade data to derive this parameter and compare it with the
U.S. treasury yield curve.

Given the option price as a function F' of its unknown parameters #, we can find

the values of the parameters that fit the option price data. The fit can be achieved
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using the following least-squares optimization
n
mein X;(F(eu ﬂ: Kl) - Ci)27
1=

where F'(0,T;, K;) is the European call option price as a function of unknown pa-
rameters f, time to maturity 7; and strike price K;; C; is the option price observed
in the market.

The parameter r is the only unknown parameter. For any fixed r, T; and K;,

the function F(r,T;, K;) is given by the following expectation
F(r,T;, K;) = E [e " max(S(T;) — K;,0)]

where S(¢) follows (3.1) with o defined by (3.12). It can be computed using the
accelerated Monte Carlo from Section 3.4.

In Figure 4 we present numerical results for the estimation of parameter r from
the market data (solid lines) in comparison with the U.S. treasury yield curve
(dashed lines). For longer maturities, the estimated risk-free rate agrees with the
yield curve. However, there is some disagreement for shorter maturities. This shows
that the model underprices the close-to-maturity options, however it prices well the
options with longer maturities.

Observe that when the option maturity increases, the estimated risk-free rate
decreases to some mean-reversion level. It is well-known that a bond spot rate is
mean-reverting. Therefore, it is reasonable to assume that the risk-free rate implied
in S&P500 options market possesses this property. Hence, it is of great interest to fit

the rate r with some of the well-known models of the spot rate, e.g. Cox-Ingersoll-
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Ross (CIR) model
dr(t) = a(m — r(t)) dt + b\/r(t) dW"(t), 7(0) = ro.
In this case, the stock price process follows
dS(t) =r(t)S(t) dt + o(t)S(t) dW (t)

with o(t) same as in (3.12), where W () and W (¢) are assumed uncorrelated.
Estimation of parameters m, a, b and 7y is performed using the same least-
squares approach. First, the European call option price is given by the following

expectation

FO.T, K;) = E [exp { _ /0 : r(u)du} max(S(T}) — K;,0)] |

where 8 = (m, a, b, ry). The corresponding option price estimator is

T;
0

%nz[::lexp {— / ) (u)du} max(S™(T;) — K;,0).

Iteratively performing Monte Carlo simulations of the option price and comparing

it with the market data, we obtain the following parameter estimates
m = 0.0075, a=28.5, b=0.3, 7ry=0.07.

In Figure 5, we show the fit of the simulated option prices with the prices observed

in the market. Note that the fit is exact except for some out-of-money options.
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Figure 6 presents the corresponding implied volatility plots.
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5 Stochastic state-dependent delay
differential equations

In this Chapter, we extend the models discussed in Section 2.3 to include a varying
time delay which depends on values of the state, i.e. S(t) and o(t). We prove the ex-
istence and uniqueness of the solution to a general stochastic state-dependent delay
differential equation (SSDDE). We also prove convergence of the Euler discrete-time
approximation scheme for SSDDEs and provide the order of convergence. Using this
approximation result, we perform Monte Carlo simulations of the stock price pro-
cess with state-dependent delay and show viability of the model through a variety

of implied volatility plots.

5.1 Existence of a solution to SSDDE

Here, we shall establish the existence of a solution to the following multi-dimensional

SSDDE:

dX(t) =F(X(#),X({t—1))dt+G(X (), X(t—71)) dW(t), (5.1

X(t) =9(t), tel-60]
where 7 = 7(X (¢), X (t — k)), 0 < §p < 7(s1,82) < 6 for 51,8, € R, k € [do, 0] and
{W(t)} is a Wiener process defined on a complete probability space (Q, F, P) with
filtration {F;}¢>0-

In what follows, | - | is the Euclidean norm. For any a < b, Ls(, C[a, b]) is the
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space of C|[a, b]-valued random variables equipped with the norm defined by

Il = vV ElnlZ

where |||, = SUPg<i<h n(t)].

For a € (0, 1], we define a set S, C Lo(2, C[—4,0]) by
Sa = {n | IM V1,1, € [=6,0] : Bln(tr) —n(ts)|* < Mlt: — to*} .

Theorem 5.1 Assume F, G and T are continuous in their arguments. Then for
any Fo-measurable initial data ¢ € Lo(Q, C[—0,0]) there exists a solution of SSDDE
(5.1) defined on [0, +00).

Proof: We use the so-called method of steps to construct a solution to (5.1). Note

that for any ¢ € [ndg, (n + 1)dg], n > 0 we have the following.

X(t) =X (ndo) + / F(X(s),X(s—7(X(s),X(s—k)))) ds
, e (5.2)
+ /5 G(X(s),X(s—7(X(s),X(s—k)))) dW (s).

Since T(z,y) > & for x,y € R™, we have s — 7(X(s), X(s — k)) < s — § and
(5.2) becomes a stochastic ODE. Note that since {X (u), =0 < u < s — §y} is a.s.
continuous, there is an a.s. continuous solution to (5.2) defined on [ndy, (n + 1)dq]

(see [58]).
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5.2 Discrete-time approximations of SSDDEs

In this section, we prove that the Euler discrete-time scheme for a SSDDE with a
special form has 1/2-strong order of convergence over [0, 7]. This extends the result
for stochastic ODEs. We also show that the scheme for a slightly more restrictive
SSDDE has 1/ 2r%+ﬂ-str0ng order of convergence, and we derive the uniqueness of

solutions as a corollary.

5.2.1 SSDDE: type 1

Consider the following special case of (5.1):

/

dXy(t) = f(X(2), Xo(t — 7)) dt + g(X(2), Xo(t — 7)) AW (1),

{ dXo(t) = 2(X(2), Xo(t — 7)) dt, (5.3)

X(t) = [X1(1), X2(0)]" = o(t), t€[-4,0],

\

where 7 = 7(X (¢)), X1(t) € R™, X5(t) € R™ and X(t) € R™*". Note that only
the Xy-component has state-dependent delayed effect.
For a fixed h > 0 and ¢ € R, we denote |t| = h[t/h], where [-] is the integer

part. Strong Euler approzimation scheme for (5.3) is defined as follows:

(

dX,(t) = F(X([t]), Xa([t] — [7])) dt + g(X([t]), Xa([t] — [7])) dW (1),
dXo(t) = 2(X ([t]), Xa(|t] — [7])) dt,

X(t) = [X1(), o ()] = (1), t€[-4,0],
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Theorem 5.2 Assume that f, g, z and T are Lipschitz continuous with respect to
all of their arguments. Then for any Fo-measurable initial data ¢ € Sy, there exists

a constant C(T, @) such that for any « € [0, 1)

E

sup | X (t) - X(t)?] < C(T,¢) h°
te[0,T)

for a sufficiently small h, where h is the partition’s mesh size, X and X satisfy (5.3)

and (5.4) respectively. Moreover, the solution X of (5.3) is pathwise unique.

Proof: Using representations (5.3) and (5.4) for X and X, and Doob’s inequality,

we get

1X — XII7,0.000)

_E usel[lgt]w(u)—)‘((un?]

<28 | sup | [1(00(0), Xofo = 7)) = SO (Ls)), Kalls] - Lﬂ)))ds?]
#28 | sup | [ o(X(6) Xalo 7)) = oK (1)), Kl - mde(s)?]
$E | sup | [ ((X(), Xals = 7)) = 2(X (L)), Kalls] - mmdsr?]

u€l0,t] JO

<ot / E|F(X(s), Xals — 7)) — (X (1)), Xa(ls] — 7)) Pds
T8 / Elg(X(5), Xals — 7)) — g(X(1s)), Kal|s] — 7)) ds
T / E|2(X (5), Xa(s — 7)) — 2(X(|5)), Xal|s] — 7)) Pds.

(5.5)

52



We now estimate each term in (5.5). First of all, we have

/0 E|f(X(s), Xa(s — 7)) = f(X(Is]), Xo([s] = [7]))["ds

< 5[ (t) + Jao(t) + J5(t) + Ju(t) + J5(2)],

where

710 = [ ELACE6), Xl =) = FX(Us)) Xals = ) ds,

10 = [ BUCHsD, Xals = 1) = FOX(1s)), Xals — ) .

50 = [ BV, Xals = ) = FK (s, Xalls) ~ 7)) .

10 = [ ECX(Ls)). Xalls) = () = FX(1s)). Xalls] — 7P s

50 = [ ELFCE, Xals) = 171) = SKUs)), Kalls] - (7)) .
Here, 7 = 7(X(s)), |7] = [r(X(Ls))] and |7] = |7(X(|s])]. Since f and T are

Lipschitz continuous and X is pathwise «/2-Lipschitz continuous for any « € [0, 1)

with the constant M (), a.s. (follows from the law of iterated logarithm, see [60]),
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we obtain

3o <L [ BXG) - X ds < L [ Mp)o— 5] ds
< LtM(g) h* = Ci(t, ) A
n(0) < [ B = X(UsDP ds < L [ 11X = X0 ds
B0 <L [ B =) = Xalls) - L) ds
< 10tg) [ Bls =~ 1) + ) ds
<20M(9) [ (o= o) ds-+200(0) [ Blr — L) d
< OLM(p)t * + ALMa() L [ EIX(5) = X(1s)P s
< 6LMy(p)t h* + ALMy ()L, M (@)t h* = Cy(t, @) h* + Cs(t, @) h*.
Here, /L and /L, are the Lipschitz constants of f and 7, respectively. We also

used the fact that ¢ and X, are Lipschitz continuous with constant Ms(p) because

the diffusion coefficient of second equation in (5.3) is zero. We also have

1) < i) [ Bl 7 ds
< M () +2LM(Le [ BIX(1s)) — X ([5)) s
< 2LMs(p)t h* + 2L My (¢) L, /Ot 1X = X125 0,00, 95
= Cult) #+ Co(9) [ 1X = Kl acion 0

Js(t) < L/O EIX(ls] — 7)) — Xalls] — |7])2 ds

t
<L / 1X - X2, e ds-
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Therefore,

[ B8 Xl =) = SO, Balls) ~ 7)) P

0

t
s%@@h%mmwﬂnx—mmmmﬁw

for a sufficiently small h. Carrying out the same analysis for terms in (5.5) with ¢

and z, we obtain

t
1X = X117, @.c00) < A(%T)/O 1X — X117, 0,109 s + B(T, ) h* (5.6)

for certain constants A and B. Consequently, an application of the Grownwall
inequality yields
IX — X|7,.c0m < B(T,9)e@DT he.

Uniqueness of the solution follows from this inequality, and the theorem is proved.

5.2.2 SSDDE: type II

In this subsection, we consider SSDDE of the following more general form:

dX(t)=F(X(t),X({t—7)) dt + G(X(t), X(t — 1)) dW (2), 657)

X(t) = ¢(®), te[=60]
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where 7 = 7(X (¢t — k)). Note that 7 depends on k-delayed value of X only. The

Euler discrete-time scheme for (5.7) is given by

dX(t) = F(X([t]), X([t] = [7])) dt + GX([t]), X([t] = |7])) AW (2), 58)

X(t) = Sﬂ(t)7 te [_59 0]7

where |7| = [7(X([t — &]))].

Theorem 5.3 Assume F', G and 7 are Lipschitz continuous with respect to all of
their arguments. Then for any Fy-measurable initial data ¢ € Sij9, there exists a

constant C(T, ) such that for any o € [0,1)

E

sup X (t) — X(t)[?
t€[0,T]

< C(T, ) A"

for a sufficiently small h, where h is the partition’s mesh size, n = a(a/2)f%1 and
[] is the ceiling integer function. Moreover, the solution X of (5.7) is pathwise

unique.

Proof: We use similar arguments used in the proof of Theorem 5.2, with necessary

modifications. Since X is pathwise a/2-Lipschitz continuous for any «a € [0, 1), a.s.,
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estimation for J5(¢) and J4(¢) becomes

(1) < LM(9) / E|\7| - |7)|* ds
< LM(@)t h° + LML [ BIX(Ls = w)) = X(Ls = n)) " d
< LM(g)t h® + LM(p)L? / 1X — X2 00 ss ) ds

t
= Cy(t, o) B* + 05(90)/0 1X — X%, .01-6,5-x)) 955

and

J3 (t) S CQ(ta Qo)ha + C(3 (t: QD)hQZ/Q

In addition, we should replace (5.6) by
) < Alp, T)/ ) +e*2(s = K)) ds + B(T,¢) h*/*,

where £(t) = || X — X||L2 ,c[-s4)- Since X and X have the same initial data, e(t) =

for t < 0. By Grownwall mequahty, we then obtain
e(t) < Be™h®/? for t € [0, k),

t
e(t) < A/ e(s) ds+ Boh®'/* fort € [k, 2K],
0
e(t) < B ht for t € [k, 2K],

where By = Bhg 7204 | ABa/2¢Asal2g By iterations, we obtain

(t) < Bpe™* i/ for t € [(n — 1)k, nx]
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n+1/2n

where B, = BhS /*7° + AB/2 ¢An=1ra/2(n _ 1)k for n > 2 and B, = B. This

completes the proof.

5.3 Continuous-time GARCH model with state-dependent
delay

The following model for stock price z and its volatility ,/y was derived in Section

2.3:

dz(t) = ) dt +/y(t)x(t) dW (1),

dy(t) o x(t) L/ 2
5 =Vt {ln ot-n T3 /t_T (e) ds} — (e,

(5.9)

where 7 > 0 is a constant. The model is derived from discrete-time GARCH(1,1)
model, and parameter estimation for S&P500 from Chapter 4 shows that the delay
parameter varies considerably from year to year. This leads us to the assumption
that 7 is a function of state values. In this section, we assume 7 = 7(y(t — k)) so a
local Lipschitz version of Theorem 5.3 can be applied.

From the previous subsection, the Euler discrete-time scheme given below is

convergent to the unique solution. The scheme is given by

Tyl — T = TR AL + /Yo V Ate,,

N(yn—k)
yn—l—l - yn (87 xn t
— =4V + In = BT (Yn—k) + - Yn—i (5.10)
At v T(yn—k) Tn—N(ypn_k) ( " ) 2 zz:; -

- ((,Y + fy)yfu
where T(y,—x) = 0o + 7Texp(pyn_x) for some —p, 7,00 > 0, N = [(T + &y)/At],
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N(Yn-k) = [T(yn-)/At], k = [k/At], [-] is the integer part and {e,},>o are i.i.d.
Normal(0,1). Here, the initial data (x,,y,) are provided for n = =N, ... 0.

The particular choice of function 7 is due to the following empirical observation:
since y represents volatility of the stock, for large y, the prices are more volatile,
and therefore, trading is more active. Assuming the market’s response to changes
in the stock price is faster when the volatility is higher, we then conclude that the
delay is a decreasing function of the volatility.

Let us try to find a fair price for the European call option written on the stock
with maturity 7" and strike price K. It is known that the option price C' is given by

the following expectation:
C=F [e_TT max(zr — K, 0)] ,

where r is risk-free spot rate and x7 is stock price at the time 7. This expectation
can be found using a Monte Carlo simulation of zr approximated by the scheme
(5.10).

Some simulation results are provided in the attached figures for different func-
tions of state-dependent delay 7. They are presented as plots of implied volatility
against strike price K. Note that implied volatility is computed using the inverse of
Black-Scholes formula applied to simulated option price C'.

It is well-known that the curve of the implied volatility of market option price
has a U-shape, this is further confirmed by our plots (see Figures 7-10). Observe
also that the curvature of the graph is getting larger and larger when the value of
the delay 7 is increased. A constant delay cannot be used to control the height of

the curve independently of the curvature, whereas varying delay can. Moreover, we
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provide some plots by using 7 as an increasing or a periodic function to illustrate the
variety of curves we can obtain. Solid lines represent 95%-confidence bounds for 108

simulations and dashed lines represent 95%-confidence bounds for 107 simulations.
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6 Appendices

6.1 Derivation of continuous-time analogue of GARCH

The discrete-time model has the following form

1
Y,=Y, 1+ (u - 502) + OpEn,

{ 2
o2 =~V + % (Z Ok an_k> +(1—a—-7y)o2_,, (6.1)
k=1

{‘Sn}nZI ~ 1.4.d. N(O, 1),

where initial data are given by (V;,0?) = (y;,v;) with 4 = —1...0. For any fixed
[ > 1 define a partition 7 = {nh | n > —I, h = 7/l}. Then discrete-time model

(6.1) defined over 7 takes the form
7T T 1 T \2 T T
wh = Yooy + | B — §(Unh) h+ oq €nns

I 2
Y aﬂ_ v — ™ Y
(om)* ="V + T (Z Oln—tyn 172 g?n—lc)h) +(1—a"—9") (O(n—l)h)27
k=1

{5Zh}n21 ~ 1.1.d. N(O, h),
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which is equivalent to

T T 1 v m v
Yoh :Y(n—l)h + (M - §(Unh)2) h+ oy Enns
(omn)” = (azrn—l)h)2 +7"V+
a” l ’
Tt (Y(ﬁ—l)h (n—i-1)h Z( U(n k)h)Z) h) -
k=1

— (" +19") (Uzrn—l)h)2-

Let us take v™ = vh, o™ = ah and define (Y™ (¢),0™(t)) by

Y0) = Y+ (1= 3007 (6= (= DB) + o3, OF(0) = W(n = D),

(0™ (1))* = (0u—yn)? + YV +
l

2
(87 p- T ™
+ = (Y(n—l)h =Yoo Z < O(n k) ) ) — (@+7) (0u-1yn)’]

k=1

% (t— (n—1)h)

for (n — 1)h < t < nh with n > 1, where W (¢) is a Wiener process defined on
our probability space (2, F, (Fi)i>0, P). Notice that (Y™ (¢),0™(t)) is a continuous
mapping from [—7,00) x  to R? and its values coincide with (Y%, 07, ) for t = nh
with n > 0. We define v™ () = v; + (viy1 — v;)(t — th)h™! and y™(t) = yi + (i1 —
yi)(t —ih)h~! for sh <t < (i + 1)h withi = —1,---— [ + 1.
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Let us consider a SDDE

ﬁqaz(u—%ﬁu»ﬁ+a@mWﬁL

do?(t)
dt

t

- (Y(t) —Y(t-7) - / (- %a?(u»du)? — (a+7)0%(0),

T t—7

=V +

(6.2)

with the initial data given by (Y (¢),02(t)) = (y(t),v(t)) for t € [-7,0]. By defining
S(t) = exp(Y(¢)) with ¢(t) = exp(y(t)) and applying the Ito’s lemma, we conclude
that S(¢) coincides with the process introduced in Section 2.3.

Now if the initial data of (6.1) and (6.2) are close in the sense that
ly™ = ylI* + [lv™ — vl|* < Ch (6.3)

for some constant C' > 0 then (Y7(t), (6™ (¢))?) and (Y (¢),02(t)) are close in the

following sense (see [34])
T T
E/WW%JWW&+E/]WWW—J%W&<C%
0 0

for some constant C' > 0, under the regularity conditions for coefficients of (6.2).
Namely,
G (0)] + [H(0)] < oo,

G(n) = G(&)| + [H(n) — H()| < Llin = £, (6.4)
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for some L > 0 and for all n, ¢ € C([—, 0], R?), where

1= 12(0)/2
H(’?) = 0 2 ’
TV + (a/7) (771 (0) = m(=7) = J=, (= m2(0)/ 2)d9) — (a+7)m(0)
vm(0) 0
G(n) =
0 0
and ||, ||-|| are Euclidean norm and supremum norm, respectively. Note that the con-

vergence result still holds when condition (6.4) is satisfied locally in C([—, 0], R?).

In other words, by choosing continuous functions y(¢) and v(¢) such that (6.3) is
satisfied for the partition 7 defined by every small A > 0 we ensure the convergence
of the solution of discrete-time model (6.1) to the solution of continuous-time model

(6.2) in the L?>-norm as h tends to zero.

6.2 Proof of Lemma 3.1

Here, we give a sketched proof of Lemma 3.1. Fix ¢ > 0 and denote C' > x = S

with S(t) satisfying (3.1). Then for a sufficiently small s

[F(t+s,z5) — F(t,x)|]=hL+ L+ I3+ I, + I,
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where

Then, by letting s — 0,

L / " (O HL(2(0), 2(0), )dod,
L —— / " 1OV H ((8), 2(0). ) o,
I — / " WO)TH((6), 2(0), t)d6dt + / " 1(6)o (1, 2)2(0) B (2(8), £(0), £)d6 AW/ (2),

L = h(0)H(z(0),z(0), )dt,

Is —» — h(—7)H (z(—7), z(0), t)dt,

where

o?(t,z)x*(0)

TH(z(0),z(0),t) = rx(0)Hy(x (), z(0),t) + Hy,(2(0), 2(0), t).

The limit for I3 is obtained by using Ito’s lemma. Then expression (3.5) follows.
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7 Conclusions and future work

In this work, we consider the problem of option pricing in the security market where
volatility depends on time and delayed values of the stock. The thesis involves
solving an integral partial differential equation for a function which defines the
option price. We develop a numerical scheme to solve this equation in the general
form. We also provide an alternative way to price options through accelerated Monte
Carlo simulations.

In order to have a viable model for the volatility, we derive a continuous-time
equivalent of GARCH(1,1)-model for stochastic volatility with delay. The model
assumes the form of a system of SDDEs. We apply the general option pricing
technique to this general model and compare the results via our numerical scheme
with those using Monte Carlo simulations.

We also address the important issue of parameter estimation. The time delay
estimation results based on market data show that the parameter varies from year to
year. This led to a model with state-dependent delay. The model takes the form of a
system of stochastic state-dependent delay differential equations (SSDDEs). Some
basic results, such as the existence and uniqueness of the solution to a SSDDE,
and the convergence of discrete-time approximations of SSDDEs, are derived. The
approximation result is used to justify the convergence of a simulated discrete-time
scheme. The simulation results produce a variety of U-shaped implied volatility
plots. This indicates the importance of studying models with state-dependent delay.

In our future work, we are planning to continue to derive and study models with
delay that arise in option pricing. We are particularly interested in developing a

general option pricing approach for models with state-dependent delay. A challeng-
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ing problem is the estimation and selection of the functional relation of the time
delay to the past stock price, and this requires close examination of market data
and some new ideas and methods. In addition, it is of an interest to model options
that are written on several underlying stocks. This would involve an extension of

the current framework to model covariances of the stocks that follow a multivariate

GARCH model.
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Program 1: Finite-difference method described in Section 3.3.

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <stddef.h>
#define THE_END 1
#define FREE_ARG charx

float *vector(long nl, long nh) {
float *v;
v=(float *)malloc((size_t) ((nh-nl+1+THE_END)*sizeof (float)));
if (!'v) { printf("allocation failure in vector()"); exit(1); }
return v-nl+THE_END;

}

float **matrix(long nrl, long nrh, long ncl, long nch) {
long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
float *%*m;
m=(float **) malloc((size_t) ((nrow+THE_END)*sizeof (float*))) ;
if ('m) { printf("allocation failure 1 in matrix()"); exit(1); }
m += THE_END;
m -= nrl;
m[nrl]=(float *) malloc((size_t) ((nrow*ncol+THE_END)*sizeof (float)));
if (!m[nrl]) { printf("allocation failure 2 in matrix()"); exit(1); }
m[nrl] += THE_END;
m[nrl] -= ncl;
for (i=nrl+1; i<=nrh; i++) m[i]l=m[i-1]+ncol;
return m;

}

void free_vector(float *v, long nl, long nh) {
free ((FREE_ARG) (v+nl-THE_END)) ;
}

void free_matrix(float **m, long nrl, long nrh, long ncl, long nch) {
free ((FREE_ARG) (m[nrl]+ncl-THE_END));
free ((FREE_ARG) (m+nrl-THE_END));

}

const float tau=0.028, r=0.0362, mu=0.0362, alpha=0.0575%250,

76



g=0.0539%250, sig0=0.0107, V=0.0141, Vb=0.0141;
const double Pi=3.1415926;

float sigma_const(float t, float x, float y) {
return sig0;

}

float sigma_init(float t, float x, float y) {
float temp;
temp = log(x/y);
return sigOxexp(-(alpha+g)*t)+(g*V+(alpha/tau)*temp*temp)*
(1-exp(-(alpha+g)*t))/(alpha+g) ;
}

double NF(double z) {

double zz, tailprob, t;

zz=fabs(z)/sqrt(2.0);

t=1.0/(1.0+0.5%zz) ;

tailprob=0.5*t*exp (-zz*zz-1.26551223+t*(1.00002368+t* (0.37409196+
t*(0.09678418+t*(-0.18628806+t*(0.27886807+t*(-1.13520398+
t*(1.48851587+t*(-0.82215223+t%0.17087277)))))))));

if (z<=0.0) return tailprob;

else return 1.0-tailprob;

}

float bscall(float x, float t, float T, float K, float sigma) {
float d1,d2,avsig;
avsig = sigma*(T-t);
dl = (log(x/K)+(avsig/2)+r*(T-t))/sqrt(avsig);
d2 = di-sqrt(avsig);
return x*NF(d1)-K*exp(-r*(T-t))*NF(d2);
}

float Fmax(float a, float b) {
if (a>b) return a; else return b;

}

void rangephi(float phi[], int sizephi, int *low, int *up, float dS) {
float templow=1000.0, tempup=0.0;
for (int i=1; i<=sizephi; i++) {
if (templow > phi[i]) templow=phil[i];
if (tempup < phi[i]) tempup=phil[il;
}
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*low = -(int)floor ((templow-phi[sizephi])/dS);
*xup = (int)floor ((tempup-philsizephil)/dS);
}

// Computation of H_ij

void fcal(float *f, int nlow, int nup, int dim, float x, float t, float T,
float K, float dS, float dt, float (*sigma) (float, float, float)) {

float *x*F,**Fold,xx,yy,ti,sum,tauh,ertau,x0,y0,A,B,C,D,f1,f2,fr,*bsp;
int i,j,k,xdim,ydim;

xdim = (2*dim+1)*(nlow+nup)+1;
ydim = (2*dim+1)*(nlow+nup)+1;

F = matrix(1,xdim,1,ydim);

Fold = matrix(1,xdim,1,ydim);

x0 = x-(nlow+dim* (nlow+nup))*dS;
yO = x-(nlow+dim* (nlow+nup))*dS;
ertau = exp(r*tau);

tauh = (ertau-1)/r;

bsp = vector(1,xdim) ;

for (i=1; i<=xdim; i++)
for (j=1; j<=ydim; j++)
Fold[i]l [j] = (x0-yO0+(i-j)*dS)*Fmax (x0+(i-1)*dS-K,0);

for (ti=T-dt; ti>=t; ti-=dt) {
for (i=2; i<=xdim-1; i++)
for (j=2; j<=ydim-1; j++)
if (i'=3) {
xx = x0+(i-1)*dS;
yy = yO+(j-1)*dS;

A = (*sigma) (ti,xx,yy)*xx*xx*dt/(2*dS*dS) ;
B = rxxx*dt/(2*dS);

D = ((xx-yy)/tauh)*(dt/(2xdS));

C = Dxertau;

F[i1[j] = (1-2*%A)*Fold[i] [j1+C*(Fold[i] [j+1]1-Fold[i]l [j-11)+
(B+A)*Fold [i+1] [j1+(-B+A)*Fold [i-1] [j]1+(-D+B+A)*Fold [i] [i+1]+
(D-B+A)*Fold[i] [i-1]1-(A/2)*(Fold[i+1] [i-1]+Fold[i-1] [i+1]);

}

for (i=1; i<=xdim; i++) F[i][i] = 0.0;

for (i=1; i<=xdim; i++) bsp[i] = bscall(x0+(i-1)*dS,ti,T,K,Vb);

for (i=1; i<=xdim; i++) {

F[i][1] = (x0-yO+(i-1)*dS)*bsp[i];
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F[i] [ydim] = (x0-yO+(i-ydim)=*dS)*bsp[i];
}
for (j=1; j<=ydim; j++) {
F[11[j] = (x0-yO+(1-j)*dS)*bsp[1];
F[xdim] [j] = (x0-yO+(xdim-j)*dS)*bsp[xdim];
}
for (i=1; i<=xdim; i++)

for (j=1; j<=ydim; j++)

Fold[il[j] = F[il[j];

}
printf ("\n");
for (j=1; j<=nlow+nup+3; j++) {

f[j] = F[nlow+dim*(nlow+nup)+1] [j+dim* (nlow+nup)-1]/tauh;

printf ("\n%f",£[j]1);
}
free_matrix(F,1,xdim,1,ydim);
free_matrix(Fold,1,xdim,1,ydim) ;
free_vector(bsp,1,xdim) ;

}

float opprice(float t, float T, float K, float phi[], int sizephi,
float dS, float dt, int dim, float (*sigma)(float, float, float))

float step,sum=0.0,*f;
int nlow,nup,i;
step=tau/(sizephi-1);
rangephi (phi,sizephi,&nlow,&nup,dS) ;
f=vector(1,nlow+nup+3);
fcal(f,nlow,nup,dim,phi[sizephi],t,T,K,dS,dt,sigma);
for (int k=2; k<=sizephi; k++) {
i = (int)floor((phi[sizephi-k+1]-phi[sizephi])/dS)+nlow+2;
sum += exp(r*(k-1)*step)*(£f[i-1]-f[i+1])*step/(2*dS);
}
free_vector(f,1,nlow+nup+3) ;
return sum;

}

int main(int argc, char *argv[]) {
float *phi,opp,K,T,dS,dt;
int opt,dim,j;
phi=vector(1,8);
dS=atof (argv[1]); // 0.5
dt=atof (argv[2]); // 0.00001
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dim=atoi(argv[3]); // 5

phi[1]=435.33;
phi[2]=434.34;
phi [3]=434.52;
phi[4]=430.72;
phi[5]=429.04;
phi[6]=430.93;
phi[7]1=431.03;
phi[8]=433.08;

T = 0.4192;
K = 435;

opp=opprice(0,T,K,phi,8,dS,dt,dim,sigma_init);
printf ("\n%f\t%f",K,opp);

free_vector(phi,1,8);
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Program 2: Maximum likelihood method described in Section 4.2.

#include <math.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>

#define ALF 1.0e-4
#define TOLX1 1.0e-7
#define ITMAX 10000
#define EPS 3.0e-8
#define TOLX2 (4*EPS)
#define STPMX 0.03

float FMAX(float a, float b) { if (a>b) return a; else return b;}
float FMIN(float a, float b) { if (a<b) return a; else return b;}

void lnsrch(int n, float xold[], float fold, float g[]l, float pl[],
float x[], float *f, float stpmax, int *check,
float (*func)(float [], int, float [], float [], int, int),
int M, float u[], int *roff, float modif[], int L, int Lmax) {

int i;
float a,alam,alam2,alamin,b,disc,f2,rhsl,rhs2,slope,sum,temp,
test,tmplam;
*check=0; *roff=0;
for (sum=0.0,i=1;i<=n;i++) sum += p[i]l*p[il;
sum=sqrt (sum) ;
if (sum > stpmax)
for (i=1; i<=n; i++) p[i] *= stpmax/sum;
for (slope=0.0, i=1; i<=n; i++) slope += glil*p[il;
if (slope >=0.0) {
for (i=1; i<=n; i++) x[i]=xo0ld[i];
*roff=1;
*f=fold;
return;
}
test=0.0;
for (i=1; i<=n; i++) {
temp=fabs(p[i]) /FMAX (fabs(x01d[i]),1.0);
if (temp > test) test=temp;
}
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}

alamin=TOLX1/test;
alam=1.0;
for (i=1; i<=n; i++)
if (p[i] < 0) alam=FMIN(alam, (EPS-x0ld[i])/FMIN(p[i],-1.0));
for (;;) {
for (i=1; i<=n; i++) x[il=xold[i]+alam*p[i];
*f=(*func) (x,M,u,modif,L,Lmax) ;
if (alam < alamin) {
for (i=1; i<=n; i++) x[i]=x0l1d[i];
*check=1;
return;
} else if (xf <= fold+ALF*alam*slope) return;
else {
if (alam == 1.0) tmplam = -slope/(2.0*(*f-fold-slope));
else {

}

}
}

rhsl = xf-fold-alam*slope;
rhs2 = f2-fold-alam2*slope;
a=(rhs1/(alam*alam)-rhs2/(alam2*alam?))/(alam-alam?) ;
b=(-alam2*rhs1/(alam*alam)+alam*rhs2/(alam2*alam2))/(alam-alam?2) ;
if (a == 0.0) tmplam = -slope/(2.0*b);
else {
disc=b*b-3.0*a*slope;
if (disc < 0.0) tmplam=0.5%alam;
else if (b <= 0.0) tmplam=(-b+sqrt(disc))/(3.0%a);
else tmplam=-slope/(b+sqgrt(disc));
}
if (tmplam > 0.5*alam) tmplam=0.5%*alam;

alam2=alam;

f2 =

*f;

alam=FMAX(tmplam,0.1%alam) ;

void dpfmin(float p[], int n, float gtol, int *iter, float *fret,

float (*func)(float [], int, float [], float [], int, int),

void (*dfunc) (float [], float [], int, float [], float [], int, int),
int M, float ul[],int *roff, float modif[], int L, int Lmax) {

void lnsrch(int n, float xold[], float fold, float g[], float pl[],
float x[], float *f, float stpmax, int *check,
float (*func) (float [], int, float [], float [], int, int),

82



int M, float u[], int *roff, float modif[], int L, int Lmax);
int check,i,its,j;
float den,fac,fad,fae,fp,stpmax,sum=0.0,sumdg,sumxi,temp,test;
float *dg,*g,*hdg,**hessin, *pnew,*xi;

dg=vector(1,n);
g=vector(l,n);
hdg=vector(1,n);
hessin=matrix(1,n,1,n);
pnew=vector(l,n);
xi=vector(l,n);
fp=(*func) (p,M,u,modif,L,Lmax) ;
(*dfunc) (p,g,M,u,modif ,L,Lmax);
for (i=1; i<=n; i++) {
for (j=1; j<=n; j++) hessin[i] [j]1=0.0;
hessin[i] [i]=1.0;
xi[i] = -gl[i];
sum += p[il*p[i];
}
stpmax=STPMX*FMAX (sqrt (sum) , (float)n) ;
for (its=1; its<=ITMAX; its++) {
*iter=its;
lnsrch(n,p,fp,g,xi,pnew,fret, stpmax,&check,func,M,u,roff,
modif,L,Lmax) ;
fp = *fret;
for (i=1; i<=n; i++) {
xi[il=pnew[i]l-p[il;
plil=pnew[il;
}
test=0.0;
for (i=1; i<=n; i++) {
temp=fabs(xi[i])/FMAX (fabs(p[i]),1.0);
if (temp > test) test=temp;
}
if (test < TOLX2) {
free_vector(xi,1,n);free_vector(pnew,1,n);
free_matrix(hessin,1,n,1,n);
free_vector(hdg,1,n) ;free_vector(g,1,n);free_vector(dg,1,n);
return;
}
for (i=1; i<=n; i++) dglil=glil;
(*dfunc) (p,g,M,u,modif,L,Lmax) ;
test=0.0;
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den=FMAX (*fret,1.0);
for (i=1; i<=n; i++) {
temp=fabs(g[i])*FMAX(fabs(p[i]),1.0)/den;
if (temp > test) test=temp;
}
if (test < gtol) {
free_vector(xi,1,n);free_vector(pnew,1,n);
free_matrix(hessin,1,n,1,n);
free_vector(hdg,1,n);free_vector(g,1,n);free_vector(dg,1,n);
return;
}
for (i=1; i<=n; i++) dglil=glil-dgl[il;
for (i=1; i<=n; i++) {
hdg[i]=0.0;
for (j=1; j<=n; j++) hdgli] += hessin[i] [jI*dg[j]1;
}
fac=fae=sumdg=sumxi=0.0;
for (i=1; i<=n; i++) {
fac += dgli]*xil[i];
fae += dgl[il*hdg[il;
sumdg += (dgl[il)*(dgl[il);
sumxi += (xi[i])*(xi[i]);
}
if (fac > sqrt(EPS*sumdg*sumxi)) {
fac=1.0/fac;
fad=1.0/fae;
for (i=1; i<=n; i++) dglil=fac*xi[i]-fad*hdg[i];
for (i=1; i<=n; i++) {
for (j=i; j<=n; j++) {
hessin[i] [j] += fac*xi[i]*xi[j]-fad*hdg[i]l*hdg[j]+
faexdg[i]l*dg[j];
hessin[j] [i]=hessin[i] [j];
}
}
}
for (i=1; i<=n; i++) {
xi[1]=0.0;
for (j=1; j<=n; j++) xi[i] -= hessin[i] [jI*g[j];
}
}
free_vector(xi,1,n);free_vector(pnew,1,n);free_matrix(hessin,1,n,1,n);
free_vector(hdg,1,n) ;free_vector(g,1,n) ;free_vector(dg,1,n);
return;
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}

float func_old(float p[], int M, float u[l, int L, int Lmax) {
float sigma,sum=0.0,v=0.0;
int i,k;
sigma = u[L]*ulL];
if (L == Lmax) sum = log(sigma)+u[L]*u[L]/sigma;
for (i=L+1; i<=M; i++) {
if (1 == L+1)
for (k=1; k<=L; k++) v +=ulk];
else v += ul[i-1]-ul[i-L-1];
sigma = p[1]+p[2]*(v*v/L)+p[3]*sigma;
if (sigma <= 0) printf("variance is negative in func");
if (i >= Lmax) sum += log(sigma)+ulil*ul[i]/sigma;
}
return sum;

}

void dfunc_old(float p[], float g[], int M, float u[l, int L, int Lmax) {
float sigma,term,A,B,C,v=0.0;
int i,k;

gl1]=g[2]=g[3]1=0.0;
sigma=u[L]*ulL];
A=1;
B=C=u[L]*u[L];
for (i=L+1; i<=M; i++) {
if (i == L+1)
for (k=1; k<=L; k++) v +=ulk];
else v += ul[i-1]-ul[i-L-1];
sigma = p[1]+p[2]*(v*v/L)+p[3]*sigma;
if (sigma <= 0) printf("variance is negative in dfunc");
if (i >= Lmax) {
term = (1/sigma)-(ulil*ul[il)/(sigma*sigma);
gl1] += termxA;
gl[2] += termxB;
gl[3] += termxC;

1+p[3]*4;
v*v+p [3] *B;
sigma+p[3]*C;

QW= v
I
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void stock_in(char filename[], int M, float S[]) {

FILE *stream;

float a;

int i;

if ((stream=fopen(filename,"r")) == NULL) printf("Cannot open file");
for (i=1; i<=M; i++) {
fscanf (stream,")f",&a) ;
S[i] = a;

}

fclose(stream);

}

float func(float p[], int M, float u[l, float modif[], int L, int Lmax) {
int i; float temp;
for (i=1; i<=3; i++) plil=p[il/modif[i];
temp=func_old(p,M,u,L,Lmax) ;
for (i=1; i<=3; i++) plil=p[il*modif[i];
return temp;

}

void dfunc(float p[], float gl[], int M, float ul[], float modif[],
int L, int Lmax) {

int i; for (i=1; i<=3; i++) pl[il=p[il/modif [i];
dfunc_old(p,g,M,u,L,Lmax);
for (i=1; i<=3; i++) pl[il=p[il*modif[i];

}

void dpfmin_mod(float p[], int n, float gtol, int *iter, float *fret,
float (*func)(float [], int, float [], float [], int, int),
void (*dfunc) (float [], float [], int, float [], float[], int, int),
int M, float ul[],int *roff, float modif[], int L, int Lmax) {

int i; for (i=1; i<=n; i++) pl[il=p[il*modif[i];
dpfmin(p,n,gtol,iter,fret,func,dfunc,M,u,roff ,modif,L,Lmax) ;
for (i=1; i<=n; i++) plil=p[il/modif [i];

}

int main(int argc, char *argv[]) {
float *p,fret,*st,*u,pl,p2,p3,ppl,pp2,pp3,ftemp,*modif,
ftemp2=0.0,91,92,q3;
int iter,M,i,roff,proff,nroff,ntot,totiter,L,Lmax,Lout;
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FILE *fout;
printf("Data: >%s\n",argv[1]);

M = atoi(argv([2]);
Lmax = atoi(argv[3]);

st=vector(1,M);
u=vector(1,M-1);
p=vector(1,3);
modif=vector(1,3);

if ((fout=fopen(argv[4],"w")) == NULL) printf ("Cannot open file");

stock_in(argv[1],M,st);
for (i=1; i<=M-1; i++) ul[i] = (stl[i+1]/st[i])-1;
for (L=1; L<=Lmax; L++) {
proff=0; nroff=0; ntot=0; totiter=0; ftemp=0.0;
modif [1]1=10000; modif [2]=modif[3]=1;

for (p1=0.000003; p1<=0.000100; pl += 0.000010) {
for (p2=0.02; p2<=0.95; p2 += 0.1) {
for (p3=0.02; p2+p3<=0.99; p3 += 0.1) {

pl1l=pi1;

p[2]=p2;

p[31=p3;

dpfmin_mod(p,3,0.0001,&iter,&fret,func,dfunc,M-1,u,
&roff,modif,L,Lmax) ;

nroff += roff;

ntot++;

totiter += iter;

if ((ftemp < -fret) & (p[2]+p[3] < 0.99)) {
ftemp = -fret;

ppl = pl1];
pp2 = pl2];
pp3 = pl3];
proff = roff;
}
}
}
}

fprintf (fout,"%d\t%1.4£f\t%1.4£\t%1.4£\t%5.2f\n",L,
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sqrt (pp1/(1-pp2-pp3)) ,pp2,pp3, ftemp) ;
if (ftemp2 < ftemp) {
ftemp2 = ftemp;

ql = ppl;
q2 = pp2;
g3 = pp3;
Lout = L;
}
}

printf ("\nThe maximal value of MLE is %f\n\tL=}d, sigma=)1.4f,
alpha=%1.4f ,beta=%1.4f\n\n",ftemp2,Lout,sqrt (252*q1/(1-9q2-q3)),
92,93);

free_vector(p,1,3);

free_vector(modif,1,3);

free_vector(st,1,M);

free_vector(u,1,M-1);

fclose(fout);
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Strike price 375 415 435 450 450
Implied volat. 0.1238 0.1124 0.1106 0.1110 0.1142

Table 1: Monte Carlo simulation results for continuous-time GARCH (2.14) with
o = 14.375 and v = 13.475.

|  Strike price |  Simulation | FDM |
375 0.1040 0.1021
415 0.1036 0.1044
435 0.1035 0.1041
450 0.1035 0.1040
475 0.1036 0.1032

Table 2: Implied volatility for stochastic volatility model (3.12) with o = 0.0575
and v = 0.0539: a comparison of Monte Carlo simulation results with the finite
difference method (FDM) for general equation.

|  Strike price |  Simulation | FDM |
375 0.1277 0.1207
415 0.1122 0.1068
435 0.1104 0.1090
450 0.1113 0.1039
475 0.1163 0.0839

Table 3: Implied volatility for stochastic volatility model (3.12) with o = 14.375
and v = 13.475: a comparison of Monte Carlo simulation results with the finite
difference method (FDM) for general equation.
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Year | l | VV | « | B | Y |

1990 1 0.1873 0.0620 0.8443 0.0937
1991 15 0.1603 0.5663 0.1131 0.3206
1992 - - - - -
1993 1 0.0714 0.0403 0.8073 0.1524
1992-93 4 0.0857 0.0446 0.8505 0.1049
1990-93 7 0.1186 0.0575 0.8886 0.0539

Table 4: Results of ML-AICC method of parameter estimation applied to S&P500
data.

| Lag k | ne=autocorr. {e,} | pp=autocorr. {e2} | fr=autocorr. {2 /o2} |

1 0.0310 0.0429 -0.0346
2 -0.0454 0.1325 0.0188
3 0.0084 0.0762 0.0553
4 -0.0053 0.1225 0.0045
5 0.0188 0.0779 0.0231
6 -0.0305 0.0971 -0.0001
7 -0.0957 0.0604 -0.0279
8 -0.0021 0.0369 0.0038
9 0.0494 0.0961 0.0148
10 -0.0242 0.1009 0.0301
11 0.0280 0.0566 -0.0254
12 0.0439 0.0074 -0.0336
13 0.0360 0.2219 0.0708
14 0.0204 0.0746 -0.0054
15 -0.0087 0.1402 0.0071

Table 5: Autocorrelation structure in the dataset for 1990-1993.
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| T ‘ I | OP | OP Error |
0.01 0.01 | 12.310362 | 0.018819
0.01 0.02 | 12.308543 | 0.018845
0.01 0.03 | 12.308754 | 0.018881
0.01 0.04 | 12.310895 | 0.018926
0.01 0.05 | 12.315323 | 0.018980
0.02 0.01 | 13.210551 | 0.019086
0.02 0.02 | 13.208350 | 0.019110
0.02 0.03 | 13.208447 | 0.019141
0.02 0.04 | 13.210579 | 0.019181
0.02 0.05 | 13.214739 | 0.019231
0.03 0.01 | 14.147881 | 0.019064
0.03 0.02 | 14.145847 | 0.019086
0.03 0.03 | 14.147392 | 0.019361
0.03 0.04 | 14.149373 | 0.019396
0.03 0.05 | 14.153369 | 0.019441
0.04 0.01 | 15.125459 | 0.019250
0.04 0.02 | 15.123305 | 0.019268
0.04 0.03 | 15.123144 | 0.019295
0.04 0.04 | 15.124992 | 0.019330
0.04 0.05 | 15.130386 | 0.019616

0.05 0.01 | 16.140877 | 0.019400
0.05 0.02 | 16.138606 | 0.019414
0.05 0.03 | 16.138304 | 0.019436
0.05 0.04 | 16.139971 | 0.019467
0.05 0.05 | 16.143603 | 0.019508

Table 6: European call option price (OP) for different values of r and p. All the
other parameters are fixed.
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Figure 1: Solution of FDE (2.16) vs. time.
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Figure 2: Dependence of variance v(T') on delay 7.
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Figure 3: Radius of 95% confidence interval of the Monte Carlo estimator vs. vari-
ance rate Vg used in the option price approximation. Several realizations are shown.
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Figure 4: Constant risk-free rate r implied from the market prices vs. maturity
for different strike prices. The estimation is based on GARCH stochastic volatility
model for S&P500 index.
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Figure 5: European call option price vs. strike price for three different maturities.
Dashed lines represent bid and ask prices observed in the market and solid lines
represent simulated prices based on CIR-GARCH stochastic volatility model.
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Figure 6: Implied volatility vs. strike price for three different maturities.

volatility plots correspond to the option prices depicted on Figure 5.
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Figure 7: Implied volatility for models with constant delay.
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Figure 8: Implied volatility for models with nearly constant delay.
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Figure 9: Implied volatility for models with decreasing state-dependent delay.
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Figure 10: Implied volatility for models with various state-dependent delays.
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