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Abstract

In this paper, we considered a new class of stochastic differential
equations involving delayed response, where the delay depends on the
system’s state. We obtained results for the existence and uniqueness of
solutions, and we proved that the Euler discrete-time approximation
scheme is convergent with a strong order of convergence. We used the
approximation result to simulate the continuous-time GARCH(1,1)
model for stochastic volatility with state-dependent delay. The simu-
lation results showed that a choice of state-dependent delay function
spans a wide variety of U-shaped implied volatility plots, and the
state-dependence can also be used to control the height of the plots.
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1 Introduction

In [1], we considered the following stochastic volatility model

dz(t) = rx(t) dt + /y(t)z(t) dW (),
—2 =V 4 = {lnx(xi —,uT—i-l/tTy(s) ds} — (a+7)y(1),

t—1) 2

as a continuous-time limit of the well-known GARCH(1,1) model. Here z(t)
represents the stock price and /y(t) represents its volatility, that is the
standard deviation of logz(t). The time delay parameter 7 was considered
as a constant. An equation for European call option was derived and a
numerical scheme was introduced. Some simulation and numerical results
showed that the model produces a U-shaped implied volatility smile. On
the other hand, via the employed parameter estimation, we showed that the
delay varies considerably from year to year. This suggests that the delay
involved in the market response may not be a constant but may depend on
the stock price.

In this paper, we consider the case where the time delay depends on z
and y. In particular, we assume that 7 is a decreasing function of y, due to
the following empirical observation: since y represents volatility of the stock,
the greater y the more volatile price, and therefore, the more active trading.
On the other hand, it is reasonable to assume that the market’s response
to changes in the stock price is faster when the volatility is higher. As a
consequence, the delay is a decreasing function of the volatility.

This leads us to consider a general stochastic state-dependent delay dif-
ferential equation (SSDDE)

dX(t)=F(X({),X(t—7))dt+G(X(t),X(t—7)) dW(t),
X(t) =e(t), tel-6,0]
where 7 takes values in [dy, §] and 7 = 7(X (¢t — k)) for k € [do, I]-

We shall establish a result on the existence of a solution to the above
SSDDE. We shall also prove that the Euler discrete-time approximation
scheme has a strong order of convergence, and this convergence also yields
the uniqueness of a solution. We shall apply the approximation result to our
continuous-time GARCH model with state-dependent delay, and we shall
use the Monte-Carlo method to carry out the simulation and to analyze the
implied volatility structure.
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2 Existence

Here, we shall establish the existence of a solution to the following multi-
dimensional SSDDE:

) dX(t) = F(X(t),X(t— 7)) dt + G(X(t), X (t — 7)) dW (1),
X(t) = (), tel[-0,0],

where 7 = 7(X(t), X(t — k)), 0 < 09 < 7(s1,82) < § for 51,50 € R",
K € [0, 0] and {W(t)} is a Wiener process defined on a complete probability
space (£, F,P) with filtration {F;}:>o.

In what follows, || is the Euclidean norm. For any a < b, Ly(2, Cla, b]) is
the space of Cla, b]-valued random variables equipped with the norm defined

by
Inllz == VEln|?,

where [|7]|c = sup,<;<; [1()]-
For a € (0, 1], we define a set S, C Ly(S2,C[—4,0]) by

Sa = {n | IM Vi1, t; € [=6,0] : Eln(ts) —n(ta)|? < Mty —to]**} .

Theorem 1 Assume F', G and T are continuous in their arguments. Then
for any Fo-measurable initial data ¢ € Ly(Q2, C[—0,0]) there exists a solution
of SSDDE (1) defined on [0,+00).

Proof: We use the so-called method of steps to construct a solution to (1).
Note that for any ¢ € [ndy, (n + 1)d], » > 0 we have the following.
t
X(0) =X(000) + [ F(X(), X (5 = 7(X(5), X(s = 1)) d
no
(2) . ’
+/ G(X(s),X(s—7(X(s),X(s—k)))) dW(s).
ndo
Since 7(z,y) > do for 2,y € R"™, we have s — 7(X(s), X (s — k)) < s — g and
(2) becomes a stochastic ODE. Note that {X(u), -6 < u < s — dp} is a.s.
continuous, and therefore there is an a.s. continuous solution to (2) defined
on [ndy, (n + 1)dg] (see [4]).

3 Discrete-time Approximations of SSDDEs

In this section we prove that the Euler discrete-time scheme for a SSDDE
with a special form has 1/2-strong order of convergence over [0,7]. This
extends the result for stochastic ODEs. We also show that the scheme for
a slightly more restrictive SSDDE has 2’[%+2]-strong order of convergence,
and we shall derive the uniqueness of solutions as a corollary.
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3.1 SSDDE: Type I

We consider the following special case of (1).

dXy(t) = f(X(t), Xo(t — 7)) dt + g(X (1), Xa(t — 7)) AW (2),
(3) dX(t) = 2(X(t), Xo(t — 7)) dt
X(t) = [X1(8), X2()]" w(t), te[-4,0],

where 7 = 7(X(¢)), X1(t) € R™, X5(t) € R™ and X (t) € R™*™. Note
that only the X,-component has state-dependent delayed effect.

For a fixed h > 0 and ¢t € R, we denote |t| = h[t/h], where [-] is the
integer part. Strong Fuler approzimation scheme for (3) is defined as follows:
(4)

[t]), Xo([t] — [7)))dt + g(X([2]), Xo([t] — [7])dW (2),
2([t] = L71))dt,
£), Xo(t)]" = (1), te€[-4,0]

where |7] = [7(X([t]))].

Theorem 2 Assume that f, g, z and T are Lipschitz continuous with respect
to all of their arguments. Then for any Fyo-measurable initial data ¢ € Sy,
there erists a constant C(T, ) such that

sup E|X(t) — X()]* < C(T, ) h

t€[0,T]

for sufficiently small h, where h is the partition’s mesh size, X and X satisfy
(3) and (4) respectively. Moreover, the solution X of (3) is pathwise unique.

Proof: Using representations (3) and (4) for X and X, we get

(5) ) )
IX = X L0000 = S E|X (u) - X(u)|* <
< 2us€1[101?t]E\ Ou(f(X(S),Xz(S = 7)) = f(X([s]), Xa(ls] = [7])))ds]?
+ QUSelfft] E| Ou(g(X(S), Xo(s — 1)) — g(X([s]), Xa(Ls] = [7])))dW (s)*
+ sup E] U(Z(X(S)aX2(S = 7)) = 2(X([s]), X2(]s] = [7])))ds|”

u€[0,t] 0



SSDDEs with applications in finance 5

< 2 /OtE|f(X(S),X2(S — 7)) — F(X(Is]), Xa([s] — [7]))"ds
+2/0 Elg(X(s), Xa(s — 7)) — g(X(1s]), Xa(ls] — |7]))["ds
+t/0 El2(X(s), Xo(s — 7)) — 2(X([s]), Xa([s] — |7]))[*ds.

We now estimate each term in (5). First of all, we have

/0 E|f(X(s), Xa(s = 7)) = F(X([s]), Xa(ls] = [7]))*ds
<5 [Ji(t) + J2(t) + J5(t) + Ja(t) + J5(2)],

where
Ji(t) =/0tE|f(X(8),X2(S — 7)) = F(X([s]), Xa(s — )" ds,
Ja(?) =/OtE|f(X(L8J),X2(8 = 7)) = F(X(Is]), Xa(s — 7)) " ds,
J3(t) =/OtE|f(X(LSJ),X2(8 = 7)) = F(X(Ls]), Xo(ls] = [7])[* ds,
Ja(?) =/0tE|f(X(L8J),X2(LSJ —17) = fF(X(Ls]), Xa(ls] = [7])) [ ds,
J5(?) =/OtE|f(X(LSJ),X2(L8J —17)) = fF(X(Ls]), Xa(ls] = [7])* ds.

Here, 7 = 7(X(s)), |7] = |7(X(|s]))] and |7] = [7(X(|s])]. Since f and 7
are Lipschitz continuous and X is 1/2-Lipschitz continuous with the constant
M(p) (as in definition of S /5), we obtain

L) <L / E\X(s)~ X(|s))P ds < L / M(g)(s — [s]) ds
< LtM(p) h = Ci(t, p) h,
L) < L / EIX(|s]) - X(|s])P ds < L / 1X = X2, 0000 45

Ju(t) < L/O E|X(s — 7) — Xa(|s] — |7])[? ds

< LM () / Els— 7 [s] + 7] ds
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< QLMg(cp)/O (s — [5])? ds+2LM2(g0)/0 E(r — 7)) ds

< 6LMy(p)t 2 +4LM2(¢)LT/O EIX(s) — X([s])[2 ds

< 6LM;(p)t B? + 4ALMy (@)L M ()t h = Ca(t, @) h? + Cs(t, ¢) h.

Here, v/L and /L, are the Lipschitz constants of f and 7, respectively. We
also used the fact that ¢ and X, are Lipschitz continuous with constant
M, (p) because the diffusion coefficient of second equation in (3) is zero. We
also have

J(t) < LMy () / Ellr] — |7 ds

< 2LM ()t 12+ 2L, [ BIX (1) = X (LD ds
< 2LM (Dt + 20 Lr [ IX = Xl g0ct00 5
= Cilte) 1+ Cole) [ 11X = X[ 0000

50 <L [ BXalls) - 17)) ~ Kalls) ~ )P ds

t
< L/O 1X = X|I7,0,00,6) 95-

Therefore,

/0 E|f(X(s), Xa(s = 7)) = F(X(Ls]), Xo([s] = [7]))[*ds

t
< Culty) b+ Cole) [ 1X = X000 ds
0

for sufficiently small h. Carrying out the same analysis for terms in (5) with
g and z, we obtain

t
6) [IX = X7, .00 < A(%T)/ 1X = X7, 0,005 5 + B(T, ¢) h
0

for certain constants A and B. Consequently, an application of the Grown-
wall inequality yields
I1X = X3, ,01007) < BT, )e @™ b,

Uniqueness of the solution follows from this inequality, and the theorem is
proved.
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3.2 SSDDE: Type II

In this subsection, we consider SSDDE of the following more general form:

- dX(t) = F(X (1), X(t — 7)) dt + G(X (), X (t — 7)) dW (2),
X(t) = (P(t)v te [_57 0]7

where 7 = 7(X (¢t — k)). Note that 7 depends on k-delayed value of X only.
The Euler discrete-time scheme for (7) is given by

(8)
dX(t) = F(X(|t]), X([t] = [7])) dt+ G(X([t]), X([t] = |7])) AW (2),
X(t)=o(t), tel-40]

where |7| = |[7(X (|t — &]))]-

Theorem 3 Assume F', G and T are Lipschitz continuous with respect to all
of their arguments. Then for any Fo-measurable initial data ¢ € Sy /o, there
exists a constant C(T, ) such that

sup E|X(t) — X(t)]* < C(T,p) h"

+€[0,T]
for sufficiently small h, where h s the partition’s mesh size, n = 2-lx1-1,
Moreover, the solution X of (7) is pathwise unique.

Proof: We use similar arguments used in the proof of Theorem 2, with neces-
sary modifications. Since X is 1/2-Lipschitz continuous, estimation for J3(t)
and Jy(t) becomes

Ji(t) < LM(0) / B||7] - |7)] ds
< LM(g)th+ LMoL, [ CBIX(1s - w]) — X(1s — r))| ds
< LMoY bt ML, [ X K amerae e ds

t
= Cy(t, p) h+ Cs(p) / 1X = X||zo.c-6,5-n)) ds,
0

and
J3(t) < Co(t, @)h + Cs(t, o)V h.

In addition, we should replace (6) by

e(t) < A(p,T) /Ot (e(s) + /(s — lﬁ)) ds + B(T, ¢) Vh,
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where €(t) = || X — X’H%Q(Q,C[f&,t]). Since X and X have the same initial data,
e(t) = 0 for t < 0. By Grownwall inequality, we then obtain

e(t) < Be™Vh fort e [0, k],
t
e(t) < A/ e(s) ds+ ByVh  for t € [k, 2],
0
e(t) < Boe™Vh fort € [k, 2x],
where By, = B\/hy + v/ Be”*/?k. By iterations, we obtain
e(t) < Bue™ B2 "' for t € [(n— 1)k, nk).

This completes the proof.

4 A Continuous-time GARCH Model with
State-dependent Delay

The following model for stock price = and its volatility ,/y was derived in [1]:

da(t) = ra(t) dt + /y(t)z(t) dW(t),
9)  dy(t) 2

o VT % {ln x(f(f)T) e %/t—T (o) ds} —er o)

where 7 > 0 is a constant. The model is derived from discrete-time GARCH
model, and parameter estimation for S&P500 in [1] shows that the delay
parameter varies considerably from year to year. This leads us to the as-
sumption that 7 is a function of state values. In this section, we assume
7 =7(y(t — k)) so Theorem 3 can be applied.

From the previous section, the Euler dicrete-time scheme given below is
convergent, to the unique solution. The scheme is given by

(10)
Tpi1l — Tp =TT AL + /YnTnV Atey,
y y N . Ap Vo) 2
n+1 = Yn n
—— =7V + In — w7 (Yn—k) + — Yn—i
At T ) | v (i) +55 ;0 o

— (a+7)¥n,

where 7(y, ) = 0o + 7 exp(py,_) for some —p, 7,80 > 0, N = [(7 + &)/ At],
N(Yn—t) = [T(Yn-r)/At], k = [rk/At], [-] is the integer part and {e,}n>0
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are i.i.d. Normal(0,1). Here, the initial data (z,,y,) is provided for n =
—N,...,0.

The particular choice of function 7 is due to the following empirical ob-
servation. Since y represents volatility of the stock, the greater y the more
volatile price, and therefore, the more active trading. Assuming the market’s
response to changes in the stock price is faster when the volatility is higher,
we then conclude that the delay is a decreasing function of the volatility.

Let us try to find a fair price for the European call option written on the
stock with maturity 7" and strike price K. It is known that the option price
C is given by the following expectation:

C = E [e7"" max(zr — K, 0)]

where r is risk-free interest rate and xr is stock price at the time 7. This
expectation can be found using a Monte Carlo simulation of x7 approximated
by the scheme (10).

Some simulation results are provided in the attached figures for different
functions of state-dependent delay 7. They are presented as plots of implied
volatility against strike price K. Note that implied volatility is computed
using the inverse of Black-Scholes formula applied to simulated option price
C.

It is well-known that the curve of the implied volatility of market option
price has a U-shape, this is further confirmed by our plots. Observe also
that the curvature of the graph is getting larger and larger when the value
of the delay 7 is increased. A constant delay cannot be used to control the
height of the curve indepedently of the curvature, whereas varying delay can.
Moreover, we provide some plots by using 7 as an increasing or a periodic
function to illustrate the variety of curves we can obtain. Solid lines represent
95%-confidence bounds for 10% simulations and dashed lines represent 95%-
confidence bounds for 107 simulations.
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Figure 1: Implied volatility for models with constant delay
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Figure 2: Implied volatility for models with nearly constant delay
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