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Abstract

This paper surveys some results in stochastic differential delay equations beginning
with “On stationary solutions of a stochastic differential equations” by K. Ito and M.
Nisio, 1964, and also some results in stochastic stability beginning with the “Stabil-
ity of positive supermartingales” by R. Bucy, 1964. The problems discussed in this
survey are the existence and uniqueness of solutions of stochastic differential delay
equations (or stochastic differential functional equations, or stochastic affine heredi-
tary systems), Markov property of solutions of SDDE’s, stochastic stability, elements
of ergodic theory, numerical approximation, parameter estimation, applications in
biology and finance.

AMS (MOS) 2001 Subject Classifications: 34K50, 34D20, 34F05, 60H10,
60J60, 93E03, 62P05, 62P10.

1 Theory of Stochastic Delay Differential Equations

1.1. The first paper of this review on the SDDEs is [12] (Ito, Nisio, 1964).
Let x(t), t ∈ (−∞,+∞), be a stochastic process, Fuv(x) be a minimal σ-algebra (Borel),

with respect to (w.r.t.) which x(t) is measurable for every t ∈ [u, v]. Let w(t) be a Wiener
process, t ∈ (−∞,+∞), w(0) = 0, and let Fuv(dw) be a minimal Borel σ-algebra, w.r.t.
which w(s) − w(t) is measurable for every (t, s) with u ≤ t < s ≤ v. Minimal σ-algebra,
which contains F1, F2,..., is determined by F1 ∨F2 ∨ ... ∨Fk. Let s be arbitrary but fixed
number.

A stochastic process
y(θ) := x(s+ θ), θ ≤ 0, (1.1)

is called a past (or memory) of the process x at the moment s and denoted by πsx. C−
denotes a space of all continuous functions defined on the negative semiaxis (−∞, 0]. C−
is a metric space with the metric

ρ−(f, g) :=
+∞∑
k=1

2−k||f − g||k/(1 + ||f − g||k), (1.2)

where ||h||k := max−k≤t≤0 |h(t)|. Let a(f) and b(f) be continuous functionals defined on
C− with metric ρ− given by (1.2).

Stochastic process x(t) is called a solution of the SDDE

dx(t) = a(πtx)dt+ b(πtx)dw(t), (1.3)
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t ∈ (−∞,+∞), if
F−∞t(x) ∨ F−∞t(dw) (1.4)

is independent of Ft+∞(dw) for every t ∈ (−∞,+∞), and

x(t)− x(s) =

∫ t

s

a(πθx)dθ +

∫ t

s

b(πθx)dw(θ). (1.5)

The solution x(t) of equation (1.3), or equation (1.5) with property (1.4), is called station-
ary if x(t) and w(t) are stictly stationary dependent, i.e., if the distribution probabilities
of the system

(x, dw) = (x(t);−∞ < t < +∞, w(v)− w(u),−∞ < u < v < +∞) (1.6)

are invariant under shifts in time. A stationary solution, obviously, is a stationary process
in the strong sense. Paper [12] mainly deals with stationary solutions. Consider the SDDE

x(t) = x(0) +

∫ t

0

a(πsx)ds+

∫ t

0

b(πsx)dw(s), (1.7)

with the condition on the past

x(t) = x−(t), t ≤ 0, (1.8)

where x−(t), t ≤ 0, is a given continuous process. Since a solution of this equation satisfies
(1.3) for t ≥ 0, the solution is also called a one-sided solution.

The authors prove:

1) the existence of one-sided solutions provided the growth of the coefficients a(f) and
b(f) is linear at the most; this restriction on the growth prevents the ”exit” of so-
lutions to infinity during a finite time; the authors use the theory of completely
bounded sets of stochastic processes by Prohorov-Skorokhod;

2) the existence of stationary solutions in the sense of system (1.6) in terms of one-sided
solutions;

3) a complete description of possible stationary solutions of SDEs of Markov type (i.e.,
equations with coefficients a and b dependent on the present value f(0) only and
satisfying a Lipschits condition).

Let (Ω,F , P ) be a probability space with the past process x−(t), t ≤ 0 and Winer
process w(t), t ∈ (−∞,+∞)t. Without loosing a generality we assume, that F−∞0(x−) ∨
F(dw) = F .

Let the following conditions be satisfied for equations (1.7)-(1.8):

A.1 a(f) and b(f) are continuous on C−(ρ−);
A.2 there exist a constant M1 > 0 and a bounded measure dK1 on (−∞, 0] such that

|a(f)|+ |b(f)| ≤M1 +

∫ 0

−∞
|f(t)|dK1(t);
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A.3 E(x−(t))4 ≤ C, t ≤ 0, for some constant C;
A.4 F−∞0(x−) is independent of F0+∞(dw).

Condition A.4 necessarily follows from the assumption that

F−∞t(x) ∨ F0t(dw) (1.9)

is independent of Ft+∞(dw) for every t ≥ 0.

Theorem 1 (Existence of one-sided solution) Assume conditions A.1-A.4. Then there
exists a solution x(t) of equation (1.7) satisfying (1.8)-(1.9) and such that E|x(t)|4 ≤
γ exp(γt), γ > 0.

The proof is based on two major steps.
The first step is to construct approximated polygonal solutions. For h > 0 define a

Cauchy polygonal solution by xh(t) := x−(t), if t ≤ 0, and xh(t) := xh(nh) + a(πnhxh)(t−
nh)+b(πnhxh)(w(t)−w(nh)), if nh ≤ t ≤ (n+1)h, n = 0, 1, 2, .... Introduce a step function
by φh(t) := nh, if nh ≤ t ≤ (n+ 1)h, n = 0, 1, 2, .... Then xh(t) satisfies the equation

xh(t) = xh(0) +

∫ t

0

a(πφh(s)xh)ds+

∫ t

0

b(πφh(s)xh)dw(s). (1.10)

It’s proved in the paper that

1) ch(t) := sups≤tE|xh(s)|4 < γ exp(γt), with γ := γ(M,dK,C) , which is independent
on h;

2) E((xh(t)−xh(s))4 ≤ γn|t−s|3/2, 0 ≤ s < t ≤ h, n = 1, 2, 3, ..., γn := γ(n,M, ||K||, C);

3) {xh;h > 0} in (1.10) is completely L-bounded.

The second step is to construct a solution. There exists a L-Cauchy sequence such that
(xh(u), B, x−)→ (y+∞, B+∞, x−) as h(n)→ 0 and

y∞(t) = y∞(0) +

∫ t

0

a(πsy∞)ds+

∫ t

0

b(πsy∞)dB∞(s) (1.11)

with probability (w.p.) 1. The inequality E(y∞(t))4 ≤ γ exp(γt) holds and x(t) = y∞(t) is
a solution of equation (1.7). To prove (1.11) it’s sufficient to prove it for any t ≥ 0 w.p.1.
Let

In :=

∫ t

0

a(πsyn)ds+

∫ t

0

b(πsyn)dBn(s) (1.12)

Then using the step function φh(t) for In in (1.12) we obtain

In =
m−1∑
k=0

a(πkhyh)h+ a(πmhyh)(t−mh) + (1.13)

+
m−1∑
k=0

b(πkhyh)[w((k + 1)h)− w(kh)] + b(πmhyh)[w(t)− w(mh)]
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where mh ≤ t < (m + 1)h, n = 1, 2, 3, . . . . Since P (ρ(yn, y∞) → 0) = 1 the sequence
{yn;n = 1, 2, ..} is completely L-bounded, and P (|In(h) − In| > ε)) < ε, then P (|y∞(t) −
y∞(0) − I∞| > 6ε) < 3ε (see (1.11)-(1.14)). Finally, E(y∞(t))4 ≤ limn→+∞E(yn(t))4 =
limn→+∞E(xh(n)(t))

4 ≤ γ exp(γt).

Theorem 2 If one-sided solution has a fourth moment E(x(t))4 ≤ α, t ≥ 0, α ∈ (0,+∞),
then there exists a stationary solution of equation (1.7).

The idea of the proof is as follows.
Let xs(t) := x(s+ t) and ws(t) := w(s+ t)− w(s). Then

dxs(t) = a(πtxs)dt+ b(πtxs)dws(t), (1.14)

t ≥ −s, xs(t) = 0, t ≤ −s, ws(ws(0) = 0) is a Wiener process.
Let Ps be a probability distribution of the (xs, Bs)-measure on C2 = C × C, and θs

be a shift operator on C2: (f̃ , g̃) := θs(f, g), i.e., f̃(t) = f(s + t), g̃(t) = g(t + s). Since
(xs, Bs) = θs(x,B) = θs(x0, B0), then

Ps(E) = P0(θ−sE), (1.15)

where xs is defined by (1.14). Since πsf is continuous for (s, f) ∈ (−∞,+∞) × C,
then Ps(E) is Borel measurable in s for any E ∈ B(C2). Because of this QT (E) :=

1/T
∫ T

0
Ps(E)ds is a probability measure on (C2,B(C∈). (ws) is completely L-bounded:

E((ws(v) − ws(u)))4 = 3(u − v)2 ≤ 3
√

2n|v − u|3/2 if |u|, |v| ≤ n. (xs, s ≥ 0) is also
completely L-bounded. Hence, (xs, Bs) is L-bounded and there exists a compact set
K = K(ε) ∈ C2 such that Ps(K) > 1 − ε and QT (K) > 1 − ε, i.e., (QT ;T > 0) is L-
bounded, where Ps is defined by (1.15). Hence, there exists a sequence Tn → +∞ such
that QTn → Q, where Q is a measure on C2. Let (x̃, w̃) be C2-valued real variable with
distribution Q. Hence w̃(t) is a Wiener process, w̃(0) = 0; x̃ is strictly stationary connected
with dw̃(t) and dx̃(t) = a(πtx̃)dt+ b(πtx̃)dw̃(t), and x̃(t) is a stationary solution.

Assume that the functionals

a(f) = a0(f)f(0) + a1(f); b(f) = b0(f)f(0) + b1(f) (1.16)

ai(f), bi(f), i = 0, 1, are bounded and continuous in f ∈ C−. In order for a stationary
solution of equation (1.7) to exist it’s sufficient that there exists m > 0 such that 2a0(f) +
b2

0(f) ≤ −m for all f ∈ C−.
Let

a(f) = −cf(0) + a1(f), c > 0, (1.17)

where a1(f), b(f) are measurable for f ∈ C− and such that

|a1(f)− a1(g)|2 ≤
∫ 0

−∞
|f(t)− g(t)|2dK1(t),

|b(f)− b(g)|2 ≤
∫ 0

−∞
|f(t)− g(t)|2dK2(t),
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and
c > ||K1||1/2 + 1/4||K2||+ 1/4(||K2||2 + 8||K1||1/2||K2||)1/2.

Then a stationary solution of equation (1.7) with the functional a(f) given by (1.17) exists
and E(x(0))2 < +∞.

Let a(f) and b(f) in (1.16) be linear functions given by

a(f) = M1 +

∫ 0

−∞
f(t)dK1(t), b(f) = M2 +

∫ 0

−∞
f(t)dK2(t). (1.18)

Then x(t) is a stationary solution of (1.7). If a(f) and b(f) are of the form (1.18) and −c
is a jump of dK1 at 0 then a stationary solution of (1.7) exists in the following two cases:

1) c > c1 + 1/2c2
2;

2) c > c1 + 1/4c2
2 + 1/4(c4

2 + 8c1c
2
2)1/2,

where c1 :=
∫ 0

−∞ |dK1(t)|, c2 :=
∫ 0

−∞ |dK2(t)|,
Let a(f) = b(f) = 1, and

dx(t) = [µ+

∫ 0

−∞
x(t+ s)dK(s)]dt+ dw(t). (1.19)

Equation (1.19) is solved by using generating functions and spectral theory of operators. If
a(f) = α(f(0)), b(f) = β(f(0)), i.e. the coefficients depend only on f(0), then one obtains
an ordinary SDE and x(t) is a well-known diffusion process.

1.2. In paper [20] (Fleming, Nisio, 1966) on SDDEs the authors apply the above
mentioned results to stochastic control problems for the equation

dx(t) = α(t, πtx)dU(t) + β(t, πtx, πtw)dw(t), t ≥ 0, (1.20)

with the past condition x−. If x(t) = x−(t), t ≤ 0, and F−∞t(x) ∨ F0t(U) ∨ F−∞t(w) is
independent of Ft+∞(dw) for all t ≥ 0, U(t) is a control process satisfying |Ui(t)−Ui(s)| ≤
|t−s|;U(0) = 0. The paper deals with the existence and uniqueness of solutions of equation
(1.20) and its optimal stochastic control.

1.3. The next paper of this review is [27] (Kushner, 1968).
Let C be the space of continuous functions on the interval [−r, 0], r > 0, and let x(t)

be a vector-valued stochastic process. Define the process xt ∈ C by xt(θ) = x(t + θ),
θ ∈ [−r, 0]. Let |x(t)|2 :=

∑n
i=1 x

2
i (t) and ||xt|| := |x(t+ θ)|, θ ∈ [−r, 0].

Let x(t) satisfy the vector SDDE

x(t) = x(0) +

∫ t

0

f(xs)ds+

∫ t

0

g(xs)dw(s), (1.21)

where x0, f and g are given functions, w(s) is a vector-valued normalized Wiener process
with independent components. Equations of the type (1.21) have been studied in [12] and
[20].

Let |f |2 :=
∑

i f
2
i , |g|2 :=

∑
i,j g

2
ij. Assume the vector f and matrix g satisfy the

following conditions

5



A1) fi and gij are continuous real-valued functions on C;

A2) x(t) is continuous w.p.1 in the interval [−r, 0] and independent of w(s)−w(0), s ≥ 0,
and E|x(t)|4 < +∞;

A3) there exists M < +∞ and bounded measure µ on [−r, 0] such that

|f(φ)− f(ψ)|+ |g(φ)− g(ψ)| ≤
∫ 0

−r
|φ(θ)− ψ(θ)|dµ(θ), ∀φ, ψ ∈ C (1.22)

with |f(0)|+ |g(0)| ≤M.

Condition A3) implies

A3′) there exists M < +∞ and bounded measure µ on [−r, 0]: with |f(0) + |g(0)| ≤ M
and

|f(φ)− f(ψ)|2 + |g(φ)− g(ψ)|2 ≤
∫ 0

−r
|φ(θ)− ψ(θ)|2dµ(θ) (1.23)

Theorem 3 Assume A1) and A3). Let x(t) and y(t) be solutions of equation (1.21) cor-
responding to the initial conditions x0 = x and y0 = y, respectively, where x and y satisfy
A2). Then

E max
T≥t≥0

|x(t)− y(t)|2 ≤ KE|x(0)− y(0)|+
∫ 0

−r
E|x(θ)− y(θ)|2dµ(θ), (1.24)

where K depends on T , µ and M of A3) only. The solution of equation (1.21) is unique
in the sense that if x = x0 satisfies A2) then two solutions with bounded second moments
must coinside w.p.1 with respect to the inequalities (1.23) and (1.24).

Theorem 4 Assume A1) - A3). Then

E max
T≥t≥0

|x(t)− x(0)|2 ≤ KTE{1 +

∫ 0

−r
(|x(θ)|2 + |x(θ)− x(0)|2)dµ(θ)},

and with x0 ∈ C fixed one has

|Ex(h)− x(0)− hf(x0)| = o(h), |E(x(h)− x(0))(x(h)− x(0))′ − hg(x0)g′(x0)| = o(h).

Theorems 3 and 4 are used then in the paper to establish the stochastic continuity,
the strong Markov character of xt, and some characterizations of the weak infinitesimal
operator of xt.

Theorem 5 Assume A1) - A3) and let x0 = x ∈ C. Then xt is a continuous strong
Markov process on the topological state space (C, C,B) with the killing time ξ(ω) = +∞
w.p.1, where C is the family of open sets in C and B is the Borel field over C.
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Definition. A real-valued function F on C is said to be in the domain of Ã, the weak
infinitesimal operator, if the limits

lim
t→0

(ExF (xt)− F (x))/t = q(x), (1.25)

lim
t→0

Exq(xt) = q(x)

exist pointwise in C and the sequence is uniformly bounded in x. We define then q(x) :=
ÃF (x) and use the notation ÃR for the weak infinitesimal operator of the process x̃t = xt
that stopped at time τ := inf{t : xt 6∈ R}, where R is an open set.

Lemma 1 Assume A1), A2) and the following condition:

A4) For all ρ > 0 there exists a bounded measure µρ on [−r, 0] such that inequality (1.22)
is satisfied for ||ψ|| ≤ ρ and ||φ|| ≤ ρ (with µρ replacing µ) and the condition |f(0)|+
|g(0)| ≤M < +∞ holds for equation (1.21).

Let Ã be the weak infinitesimal operator of the process x̃(t) that solves equation (1.21) (with
f̃ , g̃ replacing f, g respectively) and that satisfies conditions A1)-A3). Assume also that
f̃ = f , g̃ = g on the bounded open set R. Then f̃ and g̃ can be defined outside R so that
||x̃t|| ≤ K < +∞. Let F be continuous and bounded on bounded sets.

Then if F ∈ D(Ã) and ÃF = q is bounded on bounded sets, the restriction of F to R
is in D(ÃR) and ÃF = ÃRF on R.

Theorem 6 Assume A1), A2) and A4), and x0 = x ∈ C. Let F (x) = G(x(0)) have
continuous second derivatives w.r.t. x(0). Then F (x) ∈ D(ÃR) and

ÃRF (x) = LG(x(0)) = q(x) = G′u(x(0))f(x) + 1/2
∑
i,j

G′′uIuj(x(0))σij(x), (1.26)

where σij =
∑

k gikgkj.

It’s not simple to completely characterize the domain of the weak infinitesimal operators
AR or ÃR in (1.26) of the processes xt and x̃t (see (1.25)). For example, F (x) = x(−a),
r > a > 0, is not necessarily in D(Ã), since x(t) is not necessarily differentiable. Basically
it is possible to study functions F (x) whose dependence on x(θ),−r ≤ θ ≤ 0, is in the
form of an integral. The dependence of F (x) on x(0) can be more arbitrary (see Theorem
6).

Theorem 7 Assume the conditions of Theorem 6 with function F given by

F (x) =

∫ 0

−r
h(θ)H(x(θ), x(0))dθ. (1.27)

Let h be defined and have the continuous derivative on an open set containing [−r, 0]. Let
H(α, β), Hβi(α, β) and Hβiβj(α, β) be continuous in α and β. Then F (x) ∈ D(ÃR) and

ÃRF (x) = q(x) = h(0)H(x(0), x(0))− h(−r)H(x(−r), x(0))−

−
∫ 0

−r
hθ(θ)H(x(θ), x(0))dθ +

∫ 0

−r
h(θ)LH(x(θ), x(0))dθ, (1.28)
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where the operator L is defined by (1.26) and acts on H as a function of x(0) only, function
F (x) is defined in (1.27).

Theorem 8 Let G be a twice continuously-differentiable real-valued function of a real ar-
gument. Assume the conditions of Theorem 7. Then F1(x) = G(F (x)) ∈ D(ÃR) and

ÃRF1(x) = G′F (F (x))ÃRF (x) + 1/2G′′FF (F (x))B, (1.29)

where

B =

∫ 0

−r

∫ 0

−r
h(θ)h(ρ)

∑
i,j

Hβi(x(θ), x(0))Hβj(x(ρ), x(0))σij(x)dθdρ.

Theorem 8 is an extension of Theorems 6 and 7 with operator ÃR in (1.29) in place of
operators ÃR in (1.26) and (1.28). Their proofs are straightforward computations.

Corollary. Let F a(β) and F b(α, β) satisfy the hypotheses of Theorems 6 and 7, re-
spectively. If G is twice continuously differentiable then F1 = G(F a(x) + F b(x)) ∈ D(ÃR)
and

ÃRF1(x) = GF (F a(x) + F b(x))(ÃRF
a(x) + ÃRF

b(x)) + 1/2GFF (F a(x) + F b(x))B, (1.30)

where B and Ci(x) are given by

B =
∑
ij

σij(x)[F a
βi

(x(0)) + C1(x)][F b
βj

(x(0)) + Cj(x)],

Ci(x) =

∫ 0

−r
h(θ)Hβi(x(θ), x(0))dθ.

F a
βi

in (1.30) and Hβi are the derivatives w.r.t. the i-th component of x(0). The above
mentioned results of [27] are used to derive stability theorems for equation (1.21).

1.4. Consider a representation theorem from [44] (Chojnowska-Michalik, 1978) for
general stochastic delay equations.

Fix h ∈ [0,+∞) and let G = L2([−h, 0], Rm); Set H = H × G with elements denoted
by

φ =

{
φ(0) ∈ H
φ(·) ∈ G.

Let µ : [−h, 0]→ L(Rn, Rn) be a function of bounded variation. Some results of [33] enable
one to consider the linear delay equation

dx(t) =

(∫ 0

−h
dµ(θ)x(t+ θ)

)
dt,

in the semigroup context in the state space H. The corresponding semigroup Ft describes
the evolution of the solution segments{

x(t),
x(t+ θ), θ ∈ [−h, 0],
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and the following operator

Aφ =

{ ∫ 0

−h dµ(θ)φ(θ)

dφ/dθ,

with D(Ã) = W 1,2([−h, 0];Rn) is the generator of Ft under some additional assumptions
(see [39]). The following form of function µ

µ(u) =

∫ u

−h
L(θ)dθ +

p∑
i=1

Liδθi([−h, u]),

where δθi stands for the Dirac measure, is sufficient for A to be the generator of the
semigroup Ft

Theorem 3.1 of [44] shows that a solution of the stochastic linear delay equation in Rn

with the state dependent martingale noise

dzt = (

∫ 0

−h
µ(θ)z(t+ θ))dt+ dM(z)t,

is exactly the Rn-vector of the mild solution of the following stochastic evolution equation
in H

dyt = Aytdt+ dM̃(y)t. (1.31)

Moreover, it’s shown that equation (1.31) can have no strong solutions (Example 3.6 of
the paper).

A similar but weaker representation result (in the case of the noise being a Wiener
process) was obtained in [39] in a different more difficult way. The proof makes use of the
semigroup approach to boundary value broblems of [40] and of some results on stochastic
evolution equations. The authors’ theorem enables them to make solutions of stochas-
tic delay equations Markovian as well as to apply certain results on infinite dimensional
stability [40], such as filtering and control.

1.5. Consider a qualitative behavior of stochastic delay equations from [59] (Scheutzow,
1984) with a bounded memory of the form

dx(t) = F (xt)dt+ dw(t). (1.32)

Here w(t), t ≥ 0, is a d-dimentional Wiener process, F : C([0, 1], Rn)→ Rn is measurable
function w.r.t. the Borel σ-algebra B induced by the norm ||f || := sups∈[0,1] ||f(s)||2 on
C = C([0, 1], Rn), and C is the space of continuous Rn-valued functions on the interval
[0, 1](|| · ||2 stands for the l2-norm in Rn).

For any Rn-valued stochastic process y, let yt be defined by yt(s) := y(t − 1 + s),
s ∈ [0, 1].

The author assumes that F is locally bounded (bounded memory), i.e., for all R > 0:
CR := supf∈C ||F (f)||2 < +∞.

A dichotomy is proved concerning the recurrence properties of solutions of equation
(1.32). If the solution process is recurrent, there exists an invariant measure π on the state
space C which is unique. The author states a sufficient condition for the existence of an
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invariant probability measure in terms of Lyapunov functionals and gives two examples,
one being the stochastic-delay version of the famous logistic equation of population growth,
namely:

dz(t) = (k1 − k2z
k3(t− 1))z(t)dt+ k4z(t)dw(t), (1.33)

where ki > 0, i = 1, 4.
Equation (1.33) ties the relative growth dz(t)/dt(1/z(t)) of a population to the birth

rate k1 and a negative feedback term appearing due to limitation of resourses (which is
a monotone function of the population). It seems to be reasonable to assume, as it is
done in many similar deterministic models, that the feedback in the system is with a time
delay. Furthermore, the author allows the relative growth be perturbed by a white noise.
Equation (1.33) is frequently considered and sdudied in the biomathematical literature (see
e.g. [36],[49]). Usually it’s assumed that k3 = 1 and either k4 = 0 or there is no time delay.
For k4 = 0, k3 = 1 and suitable k1 and k2 it’s known [36] that apart from the constant
solution z = k1/k2 equation (1.33) has a periodic solution which is robust against certain
perturbations. The author proves that the periodic solution of (1.33) is robust against
stochastic perturbations. Equation (1.33) is not of the type equation (1.32) is. By using
the transformation x(t) = 1/k4 log z(t) + (logk2/k4)(k3k4)−1 and Ito formula it is reduced
to the form

dx(t) = (k1/k4 − k4/2− exp(k3k4x(t− 1)))dt+ dw(t),

provided z(t) > 0 and k4 > 0. Finally, the author studies approximations of delay equations
by Markov chains.

1.6. In paper [74] (Mohammed, Scheutzow, 1990) the authors study Lyapunov expo-
nents and stationary solutions for affine stochastic delay equations of the following kind

x(t) = ν(0) +

∫ t

0

∫
J

dµ(u)x(s+ u)ds+M(t), t ≥ 0, x(u) = ν(u), −r ≤ u ≤ 0, (1.34)

where M(t) is a (possibly random) Rn-valued function which is locally Lebesque-integrable
and satisfies M(0) = 0. Let r > 0, J = [−r, 0], and take the initial state η to be in C̃, the
linear space of Lebesque-integrable Rn-valued functions on J . µI is a function of bounded
variation on J (or finite signed measure on J). Under a solution of equation (1.34) one
means a function x(t), t ≥ −r, which is locally integrable, satisfies (1.34) ∀t ≥ 0, and
x(u) = ν(u), −r ≤ u ≤ 0.

Two cases for the forcing function M are treated in the paper:
M is locally integrable deterministic, or
M is a random process with stationary increments.
The Lyapunov spectrum of the homogeneous (M = 0) equation (1.34) is used to decom-

pose the state space into a sum of a finite-dimensional and a infinite-dimensional subspaces.
If the homogeneous equation is hyperbolic and M has stationary increments, the existence
and uniqueness of a stationary solution for the equation is proved.

The existence of Lyapunov exponents for the affine equations and their dependence on
the initial conditions are also studied.

Let B̃ ⊂ C̃ be the subspace of bounded Borel measurable functions ν on J with the
norm ||ν|| := supu∈J |ν(u)|, where | · | is the usual Euclidian norm in Rn. Set H : B̃ → Rn;
Hν :=

∫
J
dµ(u)ν(u), ν ∈ B̃.
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Then equation (1.34) can be rewritten as the following affine SDFE

dx(t) = Hxtdt+ dM(t). (1.35)

Equations of the similar to (1.34) and (1.35) types have been studied in [61, 59, 12, 60].
Since equation (1.34) involves no stochastic integral it seems natural to treat the equation
pathwise even if M and/or ν are random. In [65] and [61] a special case where M(t) is a
Wiener process was treated and a stochastic approach is used. An equations with a linear
in x(t) coefficient in front of dM(t) in (1.35) have also been studied. For the delay case see
[73].

1.7. Paper [76] (Mohammed, 1992) contains a review of known results and also dis-
cusses new ones concerning the existence of flows and the characterization of Lyapunov
exponents for trajectories of stochastic linear and affine hereditary systems. Such systems
(also called SDFEs) are SDEs in which the differential of the state variable x depends on
its current value x(t) at time t as well as its previous values x(s), t−r ≤ s ≤ t. The author
deals almost exclusively with the finite history case: 0 ≤ r < +∞.

Consider the following stochastic affine hereditary system

dx(t) =
m∑
i=0

[

∫ 0

−r
νi(t)(ds)x(t+ s)]dzi(t) + dQ(t), t > 0, (1.36)

with x(0) = v and x(s) = η(s) for −r < s < 0. The above system is considered on the
complete filtered probability space (Ω,F , (Ft)t≥0, P ), vectors in Rn (or Cn) are column
vectors with the standard Euclidean norm | · |. The noise in (1.36) is provided by Ft-
semimartingale zi : R+ × Ω → R, i = 0, 1, 2, ...,m; Q : R+ × Ω → Rn with jointly
stationary increments. The memory is prescribed by stationary Ft-adapted measure-valued
processes νi, i = 0,m, such that each νi(t, ω) is an n×n-matrix-valued measure on [−r, 0].
The solution x : [−r, 0] × Ω → Rn is a measurable Ft-adapted process with x|(0,+∞) ×
Ω having a.a. right-continuous with left limits sample paths (so called ”cadlag”). The
initial condition is a (possibly random) pair (v, ν) ∈ Rn × Ξ, where Ξ is some Banach
space containing all cadlag paths [−r, 0] → Bn, e.g., Ξ = C([−r, 0], Rn), D([−r, 0], Rn),
L2([−r, 0], Rn), or a weighted L2 space L2

ρ((−r, 0], Rn, so as to allow for the infinite fading
memory case r = +∞ (see [60, 21]). In order to observe the dynamics of (1.36) it’s
convinient to define the segment xt ∈ Ξ by xt(., ω)(s) := x(t+ s, ω), t ≥ 0, −r ≤ s ≤ 0.

In the deterministic case when Q = 0, νi(t, ω) are fixed in (t, ω), and zi(t) = t, i =
0,m, almost surely, the idea to use the second Lyapunov method to study the stability of
this SDDE goes back to [2], pp 126-175. In this case the existence of solutions and the
asymptotic stability of trajectories xt ∈ Ξ = C([−r,−], Rn) were studied extensively by J.
Hale and his collaborators in the sixties [16, 42, 2, 22, 9] and by others.

The corresponding issues in the case Ξ = L2([−r, 0], Rn) were studied in [34] for the
finite memory case (see also [50] and the references therein for systems with infinite mem-
ory).

For the stochastic hereditary white-noise case (z0(t) = t, zi(t) with Q(t) an independent
Brownian motion and νi(t) fixed, the existence of the (Ft)t≥0 adapted solutions and their
asymptotic stability were considered by several authors, see e.g. [12, 27, 61, 67, 69, 60, 65,
59, 66].
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Extensions of the existence results to the case of semimartingale noises zi, Q, were
discussed in [43]. The author’s discussion focuses on results concerning almost everywhere
asymptotic stability of the trajectory (x(t), xt) ∈ E := Rn × Ξ of the stochastic hereditary
system (1.36). The following issues are discussed:

(i) Existence of measurable stochastic semi-flows X : R+ × Ω × E → E for (1.36) with
the properties:
a) if x is the solution of (1.36) with initial data (v, ν) ∈ E , then x(t, ·, (v, ν)) =
(x(t), xt) for ∀t ≥ 0, a.s.;
b) each map x(t, ω, .), t ∈ R+, ω ∈ Ω, is continuous affine linear operator on E ;

(ii) A characterization of the almost sure Lyapunov exponents

lim sup
t→+∞

1/t log ||(x(t), xt)||E

for a given natural norm on the space state E . For example, if Ξ = L2([−r, 0], Rn),

one usually takes the Hilbert norm: ||(v, ν)||2M2
:= |v|2 +

∫ 0

−r |ν(s)|2ds, (v, ν) ∈ Rn ×
L2([−r, 0], R2), on the classical Delfour-Mitter space E := M2 := Rn×L2([−r, 0], Rn)
(see [33]);

iii) A study of the hyperbolicity of equation (1.36) for the case of non-zero Lyapunov
exponents. This is of interest for two reasons. In the linear case (Q = 0), the
hyperbolicity leads to an exponencial dichotomy with a flow-invariant saddle-point
splitting. When zi(y) = t with νi(t) fixed, 1 ≤ i ≤ m, Q having stationary increments
and (1.36) being hyperbolic, it turns out that the affine hereditary equation admits
a unique stationary solution.

1.8. In the survey paper [82] (Mandrekar, 1994) the author considers delay system of
the form

dxt =

∫ 0

−r
dN(s)xt+s +B(xt)dw(t) (1.37)

with xt = 0, t < 0, where xt ∈ Rn and N(·) is a continuous from the left function of
bounded variation on [−r, 0] with values in the set of n× n matrixes (see also [46, 48]).

The author derives a result on the stability of solutions of the stochastic delay differ-
ential equation (1.37) with B(x) being a nonlinear matrix-valued function and W being a
Brownian motion.

1.9. In book [92] (Da Prato, Zabczyk, 1996), Chapter 10 ”Stochastic delay systems”,
the authors study invariant measures for SDDEs by the dissipative method. Let d,m ∈ N ,
r > 0, a(·) be a finite d × d-matrix-valued measure on [−r, 0] and b be a d × d matrix, f
be a mapping from Rd into Rd, and W (·) be a standard m-dimentional Wiener process.

In the chapter the authors deal with a SDDE of the form

dy(t) =

(∫ 0

−r
a(dθ)y(t+ θ) + f(y(t))

)
dt+ bdw(t) (1.38)

y(0) = x0 ∈ Rd, y(θ) = x1(θ), θ ∈ [−r, 0]
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Let f be a Lipschitz continuous function. It’s known (see [44]) that if H = Rd ×
L2([−r, 0], Rd) then the H-valued process x,

x(t) = (y(t), yt(·)), t ≥ 0,

where yt(θ) := y(t+ θ), t ≥ 0, θ ∈ [−r, 0], is a mild solution of the equation

dx(t) = (Ax(t) + F (x(t)))dt+Bdw(t). (1.39)

Here the operators A, F and B are defined as follows

A(φ(0), φ) =

(∫ 0

−r
a(dθ)φ(θ), dφ/dθ

)
, (1.40)

with
D(A) = (φ(0), φ) : φ ∈ W 1,2([−r, 0], Rn),

and
F (X0, x1) = (f(x0), 0), (x0, x1) ∈ H,Bu = (bu, 0), u ∈ Rm.

The process x will be called an extended or a complete solution of equation (1.38) and
denoted by

x(t, x) = (y(t;x0, x1), yt(.;x0, x1), x = (x0, x1) ∈ H.

The authors consider the linear case of equation (1.39)

dx(t) = Ax(t)dt+Bdw(t), x(0) = x ∈ H

with the following restriction on the discrete delay case

dy(t) = (a0y(t) +
N∑
i=1

aiy(t+ θi))dt+ bdw(t), y(0) = x0, y(θ) = x1(θ), θ ∈ [−r, 0],

where −r = θ1 < θ2 < ... < θN < 0 = θN+1. The measure a(·) is then of the form

a(D) = a0δ0(D) +
N∑
i=1

aiδθi(D), D ∈ B([−r, 0]).

Also the authors study a nonlinear case in the above form but with the additional nonlinear
term f(y(t))dt.

The authors give an answer to the following crucial question: under what conditions
does there exist a positive number ω such that the operator A + ωI, A as in (1.40), is
dissipative? The dissipative property is needed for the stability.

1.10. In the research report [106] (Ivanov, Swishchuk, 1999) several dynamical prop-
erties of solutions of special form nonlinear delay differential equations subject to both
random initial conditions and white noise disturbances are studied. The equations are of
the form

νdx(t) = [−x(t) + f(x(t− 1))]dt+ σ(x(t− 1))dw(t), (1.41)
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where x(t) ∈ Rn, φ(t) is a continuous random process in Rn, σ is a bounded matrix-valued
function, f is a continuous nonlinear map, and ν > 0.

The invariance and global stability properties for the expectation values and the de-
pendence of solutions on initial data and the closeness of solutions of equation (1.41) are
studied. A suggested approach allows to study the global stability phenomenon as a sin-
gularly perturbed problem for ν > 0.

1.11. The following paper of this review is [102] (Mohammed, 1996).
For any path x : [−r,∞)→ Rd at each t ≥ 0 define the segment xt : [−r, 0]→ Rd by

xt(s) := x(t+ s) a.s., t ≥ 0, s ∈ J := [−r, 0].

Consider the following class of stochastic functional differential equations (sfde’s){
dx(t) = h(t, xt)dt+ g(t, xt)dW (t), t ≥ 0

x0 = θ
(1.42)

on a filtered probability space (Ω,F , (Ft)t≥0, P ) satisfying the usual conditions; i.e. the
filtration (Ft)t≥0 is right-continuous and each Ft, t ≥ 0, contains all P -null sets in F .
Denote by C := C([−r, 0], Rd) the Banach space of all continuous paths η : [−r, 0] → Rd

given the supremum norm

||η||C := sup
s∈[−r,0]

|η(s)|, η ∈ C.

In the sfde (1.42), W (t) represents m-dimensional Brownian motion and L2(Ω, C) is
the Banach space of all (equivalence classes of) (F , BorelC)-measurable maps θ : Ω → C
which are L2 in the Bochner sense. Give L2(Ω, C) the Banach norm

||θ||L2(Ω,C) :=

[∫
Ω

||θ(ω)||2CdP (ω)

]1/2

.

The sfde (1.42) has a drift coefficient function h : [0, T ] × L2(Ω, C) → L2(Ω, Rd) and
a diffusion coefficient function g : [0, T ] × L2(Ω, C) → L2(Ω, Rd×m) satisfying Hypotheses
(H1) below. The initial path is an F0-measurable process θ ∈ L2(Ω, C;F0).

A solution of (1.42) is a measurable, sample-continuous process x : [−r, T ] × Ω → Rd

such that x|[0,T ] is (Ft)0≤t≤T -adapted, x(s) is F0-measurable for all s ∈ [−r, 0], and x
satisfies (1.42) almost surely.

Hypotheses (H1) (i) The coefficient functionals h and g are jointly continuous and uni-
formly Lipschitz in the second variable with respect to the first, i.e.

||h(t, ψ1)− h(t, ψ2)||L2(Ω,Rd) + ||g(t, ψ1)− g(t, ψ2)||L2(Ω,Rd×m) ≤ L||ψ1 − ψ2||L2(Ω,C)

for all t ∈ [0, T ] and ψ1, ψ2 ∈ L2(Ω, C). The Lipschitz constant L is independent of
t ∈ [0, T ].

(ii) For each (Ft)0≤t≤T -adapted process y : [0, T ] → L2(Ω, C), the processes h(·, y(·))
and g(·, y(·)) are also (Ft)0≤t≤T -adapted.
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Theorem 9 (Existence and Uniqueness) Suppose h and g satisfy Hypotheses (H1). Let
θ ∈ L2(Ω, C;F0). Then the sfde (1.42) has a unique solution xθ : [−r,∞) × Ω → Rd

starting off at θ ∈ L2(Ω, C;F0) with [0, T ] 3 t → xθt ∈ C sample-continuous, and xθ ∈
L2(Ω, C([−r, T ], Rd)) for all T > 0. For a given θ, uniqueness holds up to equivalence
among all (Ft)0≤t≤T -adapted processes in L2(Ω, C([−r, T ], Rd)).

Note, that sfde {
dx(t) =

(∫
[−r,0]

xt(s)dW (s)
)
dW (t), t > 0

(x(0), x0) = (v, η) ∈ R× L2([−r, 0], R),
(1.43)

does not satisfy the hypotheses underlying the classical results of Dolens-Dade, Metiver and
Pelaumai, Protter, Lipster and Shiryayev, because the coefficient functional

η →
∫ 0

−r
η(s)dW (s)

on the right-hand side of (1.43) does not admit almost surely Lipschitz (or even linear)
versions C → R, whereas the case of sfde (1.43) is covered by the Theorem 9.

When the coefficients h and g in (1.42) factor through (deterministic) functionals

H : [0, T ]× C → Rd, G : [0, T ]× C → Rd×m

we can impose the following local Lipschitz and global linear growth conditions on the sfde{
dx(t) = H(t, xt)dt+G(t, xt)dW (t), t ≥ 0

x0 = θ
(1.44)

where W is m-dimensional Brownian motion:

Hypotheses (H2) (i) Suppose that H and G are Lipschitz on bounded sets in C uni-
formly in the second variable; i.e. for each integer n ≥ 1, there exists a constant Ln > 0
(independent of t ∈ [0, T ]) such that

|H(t, η1)−H(t, η2)|+ ||G(t, η1)−G(t, η2)|| ≤ Ln||η1 − η2||C

for all t ∈ [0, T ] and η1, η2 ∈ C with ||η1||C ≤ n, ||η2||C ≤ n.
(ii) There is a constant K > 0 such that

|H(t, η)|+ ||G(t, η)|| ≤ K(1 + ||η||C)

for all t ∈ [0, T ] and η ∈ C.

Assuming Hypotheses (H2) the analogue of Theorem 9 for sfde’s (1.44) holds.
The proof of the above theorem uses a classical successive approximation technique.

The main steps are as follows:
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(1) Truncate the coefficients of (1.44) outside any open ball of radius N in C, using
globally Lipschitz partitions of unity. This, together with Step 3 below, reduces the problem
of existence of a solution to the case with globally Lipschitz coefficients.

(2) Assuming globally Lipschitz coefficients, use successive approximations to obtain a
unique pathwise solution of the sfde (1.42) (for the details of this argument see [102]).

(3) Under a global Lipschitz hypothesis, it is possible to show that for sfde’s of type
(1.44), if the coefficients agree on an open set U in C, then the trajectories starting from an
initial path U must leave U at the same time and agree until they leave U . Now, truncate
each coefficient in (1.44) outside an open ball of radius N and center 0 in C. Using the
above local uniqueness result, one can ”patch up” solutions of the truncated sfde’s as N
increases to infinity.

1.12. In the paper [117] (Mao, Matasov, Piunovskiy, 2000) the authors consider a
stochastic delay differential equation with Markovian switching of the form{

dx(t) = f(x(t), x(t− τ), t, r(t))dt+ g(x(t), x(t− τ), t, r(t))dW (t), t ≥ 0

x0 = ξ ∈ Cb
F0

([−τ, 0];Rn),
(1.45)

where

f : Rn ×Rn ×R+ × S → Rn, g : Rn ×Rn ×R+ × S → Rn×m,

S = {1, 2, ..., N},

r(t) is a right-continuous Markov chain on the probability space taking values on S with
generator Γ = (γij)N×N given by

P{r(t+ δ) = j|r(t) = i} =

{
γijδ + o(δ), if i 6= j,

1 + γijδ + o(δ), if i = j,

where δ > 0. Here γij ≥ 0 is the transition rate from i to j if i 6= j, while

γii = −
∑
j 6=i

γij.

We assume that the Markov chain r(·) is independent of the Brownian motion W (·)
and that almost every sample path of r(t) is a right-continuous step function with a finite
number of simple jumps in any finite subinterval of R+.

The authors impose a hypothesis:

Hypotheses (H3) Both f and g satisfy the local Lipschitz condition and the linear growth
condition. That is, for each k = 1, 2, ..., there is an hk > 0 such that

|f(x1, y1, t, i)− f(x2, y2, t, i)|+ |g(x1, y1, t, i)− g(x2, y2, t, i)| ≤ hk(|x1 − x2|+ |y1 − y2|)

for all t ≥ 0, i ∈ S and those x1, y1, x2, y2 ∈ Rn with max{|x1|, |x2|, |y1|, |y2|} ≤ k; and
there is, moreover, an h > 0 such that

|f(x, y, t, i)|+ |g(x, y, t, i)| ≤ h(1 + |x|+ |y|)

for all x, y ∈ Rn, t ≥ 0 and i ∈ S.
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Theorem 10 (Existence and Uniqueness) Under hypothesis (H3), equation (1.45) has a
unique continuous solution x(t) on t ≥ −τ . Moreover, for every p > 0,

E

[
sup
−τ≤s≤t

|x(s)|p
]
<∞, on t ≥ 0.

In the first part of the proof we use the fact that there is a sequence {τk}k≥0 of stopping
times such that 0 = τ0 < τ1 < ... < τk →∞ and r(t) is constant on every interval [τk, τk+1).
Then, successively using an existence and uniqueness theorem for equation (1.45) on each
time interval [τk ∧ T, τk+1 ∧ T ] with initial data obtained from the previous iterations, we
obtain a unique solution x(t) of (1.45) at [−τ, T ].

The moment estimation is obtained using the fact that the initial data is bounded.

1.13. Markov property of solutions of SDDE is considered in [102] (Mohammed, 1996).
There, it was shown that the trajectory field xt corresponds to a C-valued Markov process.
The following hypotheses are needed.

Hypotheses (H4) (i) For each t ≥ 0, Ft is the completion of the σ-algebra σ{W (u) :
0 ≤ u ≤ t}.

(ii) H and G are jointly continuous and globally Lipschitz in the second variable uni-
formly with respect to the first:

|H(t, η1)−H(t, η2)|+ ||G(t, η1)−G(t, η2)|| ≤ L||η1 − η2||C
for all t ∈ [0, T ] and η1, η2 ∈ C.

Consider the sfde

xθ,t1(t) =

{
θ(0) +

∫ t
t1
H(u, xθ,t1u )du+

∫ t
t1
G(u, xθ,t1u )dW (u), t > t1

θ(t− t1), t1 − r ≤ t ≤ t1.

Let xθ,t1 be its solution, starting off at θ ∈ L2(Ω, C;Ft1) at t = t1. This gives a
two-parameter family of mappings

T t1t2 : L2(Ω, C;Ft1)→L2(Ω, C;Ft2), t1 ≤ t2

T t1t2 := xθ,t1t2 , θ ∈ L2(Ω, C;Ft1).

The uniqueness of solutions to the above sfde gives the two-parameter semigroup prop-
erty:

T t1t2 · T
0
t1

= T 0
t2
, t1 ≤ t2

Theorem 11 (The Markov Property) In (1.44), suppose Hypotheses (H4) hold. Then the
trajectory field {xηt : t ≥ 0, η ∈ C} is a C-valued Feller process with transition probabilities

p(t1, η, t2, B) := P (xη,t1t2 ∈ B), t1 ≤ t2, B ∈ Borel C, η ∈ C

i.e.
P (xt2 ∈ B|Ft1) = p(t1, xt1(·), t2, B) = P (xt2 ∈ B|xt1) a.s. (1.46)

Furthermore, if H and G do not depend on t, then the trajectory is time-homogeneous:

p(t1, η, t2, ·) = p(0, η, t2 − t1, ·), 0 ≤ t1 ≤ t2, η ∈ C.
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Proof: The first equality in (1.46) is equivalent to∫
A

1B(T 0
t2

(θ)(ω))dP (ω) =

∫
A

∫
Ω

1B{[T t1t2 (T 0
t1

(θ)(ω′))](ω)}dP (ω)dP (ω′) (1.47)

for all A ∈ Ft1 and all Borel subsets B of C. In order to prove the equality (1.47), observe
first that it holds when 1B is replaced by an arbitrary uniformly continuous and bounded
function ϕ : C → R; that is∫

A

ϕ(T 0
t2

(θ)(ω))dP (ω) =

∫
A

∫
Ω

ϕ{[T t1t2 (T 0
t1

(θ)(ω′))](ω)}dP (ω)dP (ω′)

The above relation follows by approximating T 0
t1

(θ) using simple functions. Since C is
separable and admits uniformly continuous partitions of unity, it is easy to see that (1.47)
holds for all open sets B in C. By uniqueness of measure-theoretic extensions, (1.47) also
holds for all Borel sets B in C.

The proof of the time-homogeneity statement is straightforward.

1.14. The notion of regularity of SDDE is considered in [95] (Mohammed, Scheutzow,
1997).

Let M2 := R× L2([−r, 0], R) denote the Delfour-Mitter Hilbert space with the norm

||(v, η)||M2 :=

[
v2 +

∫ 0

−r
η(s)2ds

]1/2

, v ∈ R, η ∈ L2([−r, 0], R).

Define the trajectory of (1.42) by (x(t), xt), t ≥ 0, where xt denotes the segment xt(s) :=
x(t + s), s ∈ [−r, 0], t ≥ 0. Then a liner sfde is said to be regular with respect to M2

if its trajectory random field {(x(t), xt) : (x(0), x0) = (v, η) ∈ M2, t ≥ 0} admits a
(Borel R+ ×Borel M2 ×F ;Borel M2)-measurable version X : R+ ×M2 × Ω→M2 with
a.a. sample functions continuous on R+ ×M2. The sfde is said to be singular otherwise.

Consider the one-dimensional stochastic linear delay equation

dx(t) = σx(t− r)dW (t), t > 0,

(x(0), x0) = (v, η) ∈M2 := R× L2([−r, 0], R),
(1.48)

driven by a standard Wiener process W , where σ ∈ R is fixed and r is a positive delay. It
is known that (1.48) is singluar with respect to M2 for all nonzero σ [102].

Here we will examine the regularity of the more general one-dimensional linear sfde:

dx(t) =

∫
[−r,0]

x(t+ s)dν(s)dW (t), t > 0

(x(0), x0) ∈M2 := R× L2([−r, 0], R),

(1.49)

where W is a Wiener process and ν is a fixed finte real-valued signed Borel measure on
[−r, 0].

18



Theorem 12 (Unboundedness and Non-linearity) Let r > 0, and suppose that there exists
ε ∈ (0, r) such that supp ν ⊂ [−r,−ε]. Suppose 0 < t0 ≤ ε. For each k ≥ 1, set

νk :=
√
t0

∣∣∣∣∫
[−r,0]

exp

(
2πiks

t0

)
dν(s)

∣∣∣∣ .
Assume that

∞∑
k=1

νkx
1/ν2

k =∞ (1.50)

for all x ∈ (0, 1). Let Y : [0, ε] ×M2 × Ω → R be any Borel-measurable version of the
solution field {x(t) : 0 ≤ t ≤ ε, (x(0), x0) = (v, η) ∈ M2} of (1.49). Then for a.a. ω ∈ Ω,
the map Y (t0, ·, ω) : M2 → R is unbounded in every neighborhood of every point in M2,
and (hence) non-linear.

Remark:
(i) Condition (1.50) of the theorem is implied by

lim
k→∞

νk
√

log k =∞.

(ii) For the delay equation (1.48), ν = δ−r, ε = r. In this case condition (1.50) is
satisfied for every t0 ∈ (0, r].

Proof: The main idea is to track the solution random field of (a complexified version
of) (1.49) along the classical Fourier basis:

νk(s) = exp

(
2πiks

t0

)
, −r ≤ s ≤ 0, k ≥ 1

in L2([−r, 0], C). On this basis, the solution field gives an infinite family of independent
Gaussian random variables. This allows us to show that no Borel measurable version of the
solution field can be bounded with positive probability on an arbitrary small neighborhood
of 0 in M2, and hence on any neighborhood of any point in M2.

Note that the pathological phenomenon in Theorem 12 is peculiar to the delay case
r > 0. The proof of the theorem suggests that this pathology is due to the Gaussian
nature of the Wiener process W coupled with the infinite-dimesionality of the state space
M2. Because of this, one may expect similar difficulties in certain types of linear stochastic
differential equations driven by multidimensional white noise.

2 Stochastic stability of SDDEs

In this section we survey some results concerning the stochastic stability of stochastic
differential delay equations.

2.1. We start with paper [14] (Bucy, 1965), where the stability of solutions of nonlinear
difference equations containing random elements is considered. The results of the paper
were announced in [11]. A generalization of these results are to be found in [15].
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Guided by the Lyapunov theory for deterministic systems the author introduces the
concepts of a random equilibrium point and the stability of a random solution in probability
as well as an almost everywhere or almost sure asymptotic stability.

Consider the following random equation

xn = f(xn−1, rn−1) (2.1)

where x0 is a given random vector variable, f is a continuous real valued vector func-
tion, and rn−1 is a sequence of random quantities. It’s assumed that there exists almost
everywhere a unique random variable xe satisfying

xe = f(xe, rn), ∀n ≥ 0

which is called then an equilibrium point, with function f in (2.1).
The results obtained are roughly as follows:

a) the existence of a positive definite continuous function which is a supermartingale
along the solution is sufficient for the stability in probability;

b) the existence of a decreasing positive supermartingale is sufficient for the asymptotic
stability almost everywhere.

By the Massera theorem [1], the existence of a Lyapunov function is a necessary con-
dition for the appropriate type of stability.

In [3] a rather similar definition of the stability in probability is given, but the results
are weaker, and the almost sure stability is not considered.

2.2. In paper [15] (Kushner, 1965) the author studies the sample asymptotic behavior
and almost sure stability of the equlibrium solution of SDEs.

The author obtains a sufficient condition for the almost sure stability in terms of expo-
nentially decaying second moments which also quarantees that the sample paths themselves
decay exponencially w.p.1. It implies almost sure stability of the equilibrium solution for
the inhomogeneous SDE

dx(t) = m(t, x(t))dt+ σ(t, x(t))dw(t), x(t) ∈ Rn, w(t) ∈ Rn

under the uniform Lipschitz and the uniform growth conditions on functions m and σ and
the assumption

m(t, 0) = 0, σ(t, 0) = 0,

where x1 = x2 = ... = 0 is the equilibrium solution.
Related to [15] is the work of Khasminskii [6]. Kac [5] and McKean [7] study the

winding of the solution paths of simple oscillators driven by a ”white noise”around the
origin in the phase space of the solutions. Results similar to those obtained in [15] can also
be found in [23].

In [18] the following equation is studied

ẋ(t) = Ax(t) +Bx(t+ η(t)), (2.2)
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where A, B are matrices, η(t) is continuous on the right, Markovian and jump process.
Sufficient conditions for the asymptotic stability in probability of solutions of equation

(2.2) are given.
In [24] the author studies equation

ẋ(t) = Ax(t) +Bx(t− η(t)), (2.3)

where A, B are matricies, η(t) is a homogeneous pure jump Markov process. The asymp-
totic stability in probability of the zero solution of equation (2.3) is studied.

In [32] the following system of equations is investigated

ẋ(t) = y(t) (2.4)

dy(t) = [−
∫ +∞

0

y(t− s)dK0(s)−
∫ +∞

0

x(t− s)dK1(s)]dt+ b(t, y(t+ τ))dξ(t),

x(τ) = φ(τ), ẋ(τ) = φ̇(τ), τ ≤ 0,

where ξ(t) is a Wiener process, K0(s) and K1(s) are some measures of bounded variation
on [0,+∞).

The authors prove that the trivial solution of equation (2.4) (b(t, φ(τ)) = 0, if φ(τ) = 0)
is asymptotically stable in mean square.

Let

r(t) := E(x2(t) + y2(t))

γ(φ) := supτ≤0 E(φ2(τ) + φ̇2(τ)).

Definition The trivial solution of system (2.4) :

a) is stable in mean square if for every ε > 0 there exists δ(ε) > 0 such that r(t) < ε,
t ≥ 0, if and only if γ(φ) < δ(ε) and supτ≤0 E(φ4(τ) + φ̇4(τ)) < +∞;

b) is asymptotically stable if it is stable and limt→+∞ r(t) = 0.

Theorem 13 Suppose

|b(t, φ1)− b(t, φ2|2 ≤
∫ ∞

0

|φ1(−s)− φ2(−s)|2dK2(s),

where K2 is a measure of bounded variation, αij :=
∫∞

0
si|dKj(s)|, βij :=

∫∞
0
sidKj(s).

Assume also that K0(s) has a jump at zero of the magnitude a > 0 and β01 > 0, a >∫ +∞
0
|dK0(s)|+ α11 + α02 and α01 + α21 + α12 < +∞. Then the trivial solution of equation

(2.4) is asymptotic stable in mean square.

The proof uses a Lyapunov function of the following form

V (x(t+ τ), y(t+ τ)) = y(t) +

∫ ∞
0

x(t− s)dK0(s)−
∫ ∞

0

dK1(s)

∫ t

t−s
x(t1)dt1.
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In [38], for the equation
ẋ(t) = f(t, xt(θ))

with retardation xt(θ) = x(t + θ), 0 ≥ θ ≥ η(t, ω), −r ≤ η ≤ 0, η is a stochastic process,
the stability of solutions in mean is considered.

In paper [29] an equation of the type (2.4) is considered and the asymptotic stability
of the trivial solution in mean square is studied.

In [25], for the equation

ẋ(t) = F (x(t+ θ), ξ(t, ω)),

where −∞ < θ ≤ 0 and ξ(t) is stationary process, the existence of stationary and periodic
solutions is studied.

2.3. Stability of solutions of equation (1.21) is studied in [27] (Kushner, 1968). Various
definitions concerning the stochastic stability are introduced in [15, 26]. The following
results are extensions of those in [26], where the state space is a Euclidian space.

Theorem 14 Let xt be a continuous on the right strong Markov process defined on the
topological state space (C, C,B) with weak infinitesimal operator Ã. Let the norm || · ||
generates C, and let the nonnegative continuous real-valued function V (x) ∈ D(Ã) . Let
Q = {x : V (x) < q} and let τ := inf{t : xt 6∈ Q}. Set τ =∞ if xt ∈ Q for all t < +∞. Let
ÃV (x) = −k(x) < 0 in Q. Then for x = x0 ∈ Q

(B1) V (xt∧τ ) = ωt is a nonnegative supermartingale;

(B2) Pxsup+∞>t>0 V (xt) ≤ q ≤ V (x)/q;

(B3) V (xt∧τ )→ v ≥ 0 w.p.1;

If, in addition,

i) K is uniformly continuous on the nonempty open set Rδ̂ = x : k(x) < δ̂∩Q for some

δ̂ > 0, and

ii) for all sufficiently large but finite Markov times t and all sufficiently small ε one has

Px{ max
t+h≥s≥t

||xs − xt|| ≥ ε, xr ∈ Q, r ≤ t} → 0

as h→ 0 uniformly in t for sufficiently large t and any x ∈ Q,

then

(B4) k(xt)→ 0 w.p.1 (relative to ΩQ = {ω : sup∞>t≥0 V (xt) < q}).

Theorem 15 Assume A1), A2) and A4) of subsection 1.1. Let V (x) be a continuous
nonnegative real valued function on C. Suppose that
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(iii) there is a bounded open set B such that

x0 = x ∈ Q = {x : V (x) < q} ∩B,

and supt>s≥0 V (xs) < q imply that xs ∈ Q for all 0 < s < t.

Let V (x) ∈ D(ÃQ) and ÃQV (x) = −k(x) ≤ 0 in Q.
Then B1)-B3) hold, and P (ΩQ) ≥ 1− V (x)/q.

If k is uniformly continuous on Rδ̂ = x : k(x) < δ̂ for some δ̂ > 0 then k(xt)→ 0 w.p.1
(relative to ΩQ).

2.4. In book [51] (Khasminskii, 1980) the author deals with some stability results of
stochastic systems which appeared since the Russian edition of the book [30] was published.

For the differential equation

ẏ(t) = F (x(t))y(t),

where y(t) ∈ Rn, F (x) is an n × n matrix, x(t) is a Markov process with infinitesimal
operator L, the author gives a review of the moment stability and the almost sure stability
for linear systems of equations whose coefficients are Markov processes.

Also, the author studies the almost sure stability of paths of the one-dimensional dif-
fusion process

dx(t) = b(x((t))dt+ σ(x(t))dw(t). (2.5)

The basic result is this one. If x(t) in (2.5) is a recurrent process in Rn, then the process
x(t) is an almost sure stable in the large.

The author also considers a reduction principle for a two-component diffusion process.

2.5. In the survey paper [82] (Mandrekar, 1994) the author presents a review of the
results related to some extensions of Lyapunov methods in the stability theory for the
solutions of infinite-dimensional (stochastic and deterministic) evolution equations. As a
consequence he can derive results on the stability of solutions of SDDEs of the type (1.37)
by using the spectral theory of operators generated by the equation.

The same methods are used in [92] for SDDEs of the types (1.38) and (1.39).

2.6. We continue this section by reviewing of [117] (Mao, Matasov, Piunovskiy, 2000).
Consider a stochastic delay differential equation with Markovian switching (1.45):{

dx(t) = f(x(t), x(t− τ), t, r(t))dt+ g(x(t), x(t− τ), t, r(t))dW (t), t ≥ 0

x0 = ξ ∈ Cb
F0

([−τ, 0];Rn),
(2.6)

Denote the solution of this equation by x(t, ξ). For the purpose of stability we may
asssume, without loss of generality, that f(0, 0, t, i) = 0 and g(0, 0, t, i) = 0 for all t ≥ 0
and i ∈ S. Therefore, in this case, equation (2.6) admits a trivial solution x(t, 0) = 0.

Let C2,1(Rn×R+×S;R+) denote a family of all non-negative functions V on Rn×R+×S
which are twice continuously differentiable in x and once differentiable in t. For any
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V ∈ C2,1(Rn ×R+ × S;R+) define LV : Rn ×Rn ×R+ × S → R by

LV (x, y, t, i) =Vt(x, t, i) + Vx(x, t, i) f(x, y, t, i)+

+
1

2
trace{gT (x, y, t, i)Vxx(x, t, i)g(x, y, t, i)}+

N∑
j=1

γijV (x, t, j).
(2.7)

Theorem 16 (p-th Moment Exponentional Stability) Let the hypothesis (H3) hold. Let
p, c1, c2 be positive numbers and λ1 > λ2 ≥ 0. Assume that there exists a function V ∈
C2,1(Rn ×R+ × S;R+) such that

c1|x|p ≤ V (x, t, i) ≤ c2|x|p

for all (x, t, i) ∈ Rn ×R+ × S, and

LV (x, y, t, i) ≤ −λ1|x|p + λ2|y|p

for all (x, y, t, i) ∈ Rn ×Rn ×R+ × S. Then

lim sup
t→∞

1

t
log(E|x(t, ξ)|p) ≤ −γ

for all ξ ∈ Cb
F0

([−τ, 0];Rn), where γ > 0 is the unique root of the equation

γ(c2 + τλ2e
γτ ) = λ1 − λ2

In other words, the trivial solution of (2.6) is p-th moment exponentially stable with
Lyapunov exponent not greater than −γ.

Proof: Define U(x, t, i) ∈ C2,1(Rn ×R+ × S;R+) by

U(x, t, i) = eγt
[
V (x, t, i) + λ2

∫ t

t−τ
E|x(s)|pds

]
.

Then using Ito’s formula

EU(x(t), t, r(t)) = EU(x(0), 0, r(0)) + E

∫ t

0

LU(x(s), x(s− τ), s, r(s))ds

obtain the following estimate

EU(x(t), t, r(t)) ≤ (c2 + τλ2(1 + eγτ ))E||ξ||p.

Also, from the assumptions we have another estimate

EU(x(t), t, r(t)) ≥ eγtE|x(t)|p.

Consequently

E|x(t)|p ≤ 1

c1

(c2 + τλ2(1 + eγτ ))e−γτ ,

and the required assertion follows.

24



Theorem 17 (Almost sure exponentional stability) Let the hypothesis (H3) hold. Assume
that there is a constant K > 0 such that for all (x, y, t, i) ∈ Rn ×Rn ×R+ × S,

|f(x, y, t, i)| ∨ |g(x, y, t, i)| ≤ K(|x|+ |y|).

Let p > 0. Assume that the trivial solution of (2.6) is p-th moment exponentially stable,
that is, there is a positive constant γ such that

lim sup
t→∞

1

t
log(E|x(t, ξ)|p) ≤ −γ

for all ξ ∈ Cb
F0

([−τ, 0];Rn). Then

lim sup
t→∞

1

t
log(|x(t, ξ)|) ≤ −γ

p
a.s.

i.e., p-th moment exponential stability implies almost sure exponential stability.

Proof: Fix the initial value ξ arbitrarily and write x(t, ξ) = x(t). Let ε ∈ (0, γ/2)
be arbitrary. By the p-the moment exponential estimate and the theorem 10, there is a
positive constant k such that

E|x(t)|p ≤ ke−(γ−ε)t, for t ≥ −τ.

Here we skip an estimation routine of E[sup(k−1)σ≤t≤kσ |x(t)|p]. Finally, the following in-
equality is obtained:

P

{
ω : sup

(k−1)σ≤t≤kσ
|x(t)| > e−(γ−2ε)kσ/p

}
≤ C(k + 1)e−εkσ.

for some C > 0. In view of the well-known Borel-Cantelli lemma, we see that for almost
all ω ∈ Ω,

sup
(k−1)σ≤t≤kσ

|x(t)| ≤ e−(γ−2ε)kσ/p

holds for all but finitely many k. Hence, there exists a k0(ω), for all ω ∈ Ω excluding a
P -null set, for which the above inequality holds whenever k ≥ k0. Consequently, for almost
all ω ∈ Ω,

1

t
log(|x(t)|) ≤ −(γ − 2ε)kσ

pt
≤ −γ − 2ε

p

if (k − 1)σ ≤ t ≤ kσ. Therefore,

lim sup
t→∞

1

t
log(|x(t)|) ≤ −γ − 2ε

p
a.s.

and the required inequality follows by letting ε→ 0.

2.7. Now we focus on the article [116] (Mao, 2000). The subject of this paper is
stability of SDDE with Markovian switching of the following form

dx(t) = f(x(t), x(t− δ(t)), t, r(t))dt+ g(x(t), x(t− δ(t)), t, r(t))dW (t) (2.8)
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on t ≥ 0 with initial data x0 = ξ ∈ Cb
F0

([−τ, 0], Rn), where

f : Rn ×Rn ×R+ × S → Rn and g : Rn ×Rn ×R+ × S → Rn×m.

We impose the following hypotheses:

Hypotheses (H5) (i) Both f and g satisfy the local Lipschitz condition and the linear
growth condition. That is, for each k = 1, 2, ..., there is an hk > 0 such that

|f(x1, y1, t, i)− f(x2, y2, t, i)|+ |g(x1, y1, t, i)− g(x2, y2, t, i)| ≤ hk(|x1 − x2|+ |y1 − y2|)

for all t ≥ 0, i ∈ S and those x1, y1, x2, y2 ∈ Rn with max{|x1|, |x2|, |y1|, |y2|} ≤ k.
(ii) For every i ∈ S, there are constants αi ∈ R and ρi, σi, βi ≥ 0 such that

2|xTf(x, 0, t, i)| ≤ αi|x|2, |f(x, 0, t, i)− f(x, y, t, i)| ≤ ρi|y|,
|g(x, y, t, i)|2 ≤ σi|x|2 + β|y|2

for all x, y ∈ Rn and t > 0.

Under these hypotheses, for any given initial data ξ ∈ Cb
F0

([−τ, 0], Rn) equation (2.8) has
a unique continuous solution denoted by x(t, ξ) on t ≥ −τ . Let us define

A = diag(−(α1 + ρ1 + σ1), ...,−(αN + ρN + σN))− Γ

where Γ is a generator of Markov chain r(t). We shall assume that the matrix A = (aij)
has all positive leading principal minors, that is,

det ( aij | 1 ≤ i, j ≤ k ) > 0 for all 1 ≤ k ≤ N.

Also, we assume
(1/(ρ1 + β1), . . . , 1/(ρN + βN))T > A−1~1.

We further define

(b1, . . . , bN)T = A−1~1, k = max
1≤i≤N

bi(ρi + βi), θ =
1− k

2k
, λ =

1 + k

2

qi = (1 + θ)bi, q̂ = min
1≤i≤N

qi, q̌ = max
1≤i≤N

qi.

With these notations we can now state the sufficient criteria for the exponential stability
of equation (2.8).

Theorem 18 Let hypotheses (H5) hold. Suppose all the assumptions on matrix A hold
too. Then the trivial solution of (2.8) is exponentially stable in mean square if one of the
following conditions is satisfied:

(1) supt∈R+
δ̇(t) < 1− λ

1+θ
;

(2) δ̇(t) < 1 for all t ≥ 0 and

lim sup
t→∞

1

t

∫ t

0

[0 ∨ δ̇(u)]du <
γq̂

λ
e−γτ

where γ > 0 is the unique solution to the equation 1 + θ = γq̌ + λeγτ .
(3) q̂(1 + θ) > λq̌ exp[τ(1 + θ)/q̌].
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2.8. The article [118] (Mao, Shaikhet, 2000) discusses an exponential stability of the
following SDDE with Markovian switching:

dx(t) = f(x(t), x(t− τ1), t, r(t))dt+ g(x(t), x(t− τ2), t, r(t))dW (t) (2.9)

on t ≥ 0 with initial data ξ ∈ Cb
F0

([−τ, 0], Rn), τ = τ1 ∨ τ2, where

f : Rn ×Rn ×R+ × S → Rn and g : Rn ×Rn ×R+ × S → Rn×m.

As a standing hypothesis, we assume that both f and g satisfy the local Lipschitz condition
and the linear growth condition which assures the existence and uniqueness of the solution
with initial data ξ.

Hypotheses (H6) (i) For every i ∈ S, there are constants αi ∈ R and βi, γi ≥ 0 such
that

2|xTf(x, x, t, i)| ≤ αi|x|2 and |g(x, z, t, i)|2 ≤ βi|x|2 + δi|z|2

for all x, z ∈ Rn and t ≥ 0.
(ii) There are nonnegative constants K1, K2 and K3 such that

|f(x, x, t, i)− f(x, y, t, i)|2 ≤ K1|x− y|2 and |f(x, y, t, i)|2 ≤ K2|x|2 +K3|y|2

for all x, y ∈ Rn and i ∈ S.

The trivial solution is said to be exponentially stable in mean square if

lim sup
t→∞

1

t
log(E|x(t, ξ)|2) < 0

for any initial data ξ ∈ Cb
F0

([−τ, 0], Rn).

Theorem 19 Let hypotheses (H6) hold. Set

q̌ = max
1≤i≤N

qi, β̌ = max
1≤i≤N

βi, δ̌ = max
1≤i≤N

δi.

Assume that there are positive constants q1, q2, . . . , qN and θ such that λ1 > λ2, where

λ1 = min
1≤i≤N

(
−[αi + βi + θ]qi −

N∑
j=1

γijqj

)
, λ2 = max

1≤i≤N
δiqi.

Let

τ ∗ =
1

2(K2 +K3)

(√
(β̌ + δ̌)2 + 2θ(λ1 − λ2)(K2 +K3)/q̌K1 − β̌ − δ̌

)
.

If the time lag τ1 < τ ∗ though the time lag τ2 is arbitrary, then the trivial solution of
equation (2.9) is exponentially stable in mean square.
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2.9. The article [125] (Swishchuk, Kazmerchuk, 2002) considers the following model.
Let {Ω,F , {Ft}t≥0, P} be a complete probability space with filtration satisfying usual

conditions (i.e. it is right continuous and F0 contains all P -null sets). Define stochastic
processes {x(t), t ∈ [−h, T ]} ∈ Rn, {φ(θ), θ ∈ [−h, 0]} ∈ Rn, scalar Brownian motion
{W (t), t ∈ [0, T ]}, centralized Poisson measure {ν(dy, dt), t ∈ [0, T ], y ∈ [−1,+∞)} with
parameter Π(dy)dt and for all t ∈ [0, T ]:

x(t) =φ(0) +

∫ t

0

[a(r(s))x(s) + µ(r(s))x(s− τ)]ds+

+

∫ t

0

σ(r(s))x(s− ρ)dW (s) +

∫ t

0

∫ +∞

−1

yx(s)ν(dy, ds);

(2.10)

and x(t) = φ(t) for t ∈ [−h, 0]. Here: a(·), µ(·), σ(·) are matrix maps with dimension n×n
acting from the set S = {1, 2, ..., N}; τ > 0, and ρ > 0; {r(t), t ∈ [0,+∞)} is Markovian
chain taking values at the set S with generator Γ = (γij)N×N :

P (r(t+ δ) = j|r(t) = i) =

{
γijδ + o(δ), i 6= j

1 + γiiδ + o(δ), i = j

where δ > 0, γij ≥ 0 and γii = −
∑

i6=j γij. Assume r(·) is independent of W (·).
Assign C2,1(Rn × R+ × S;R+) the family of all nonnegative functions V (x, t, i) at

Rn × R+ × S which have a contionuous second derivative by x and have a continuous
derivative by t. For V ∈ C2,1(Rn×R+×S;R+) introduce an operator LV : Rn×R+×S → R
by rule:

LV (x, t, i) =Vt(x, t, i) + Vx(x, t, i) · [a(i)x(t) + µ(i)x(t− τ)]

+
1

2
tr[xT (t− ρ)σT (i)Vxx(x, t, i)σ(i)x(t− ρ)] +

N∑
j=1

γijV (x, t, j)

+

∫ ∞
−1

[V (x+ yx, t, i)− V (x, t, i)− Vx(x, t, i)yx] Π(dy)

(2.11)

Theorem 20 Assume p, c1, c2 are positive integers and λ1 > 0 and there a exists function
V (x, t, i) ∈ C2,1(Rn ×R+ × S;R+) such that:

c1‖x‖p ≤ V (x, t, i) ≤ c2‖x‖p

and
LV (x, t, i) ≤ −λ1‖x‖p

for all (x, t, i) ∈ Rn ×R+ × S. Then

lim sup
t→∞

1

t
ln(E|x(t)|p) ≤ −γ,

where x(t) is the solution of (2.10) with initial data φ(t) and γ > 0 is defined by γ = λ1/c2.
In other words, a trivial solution of (2.10) is p-exponentially stable and p-exponent of
Liapunov no greater then −γ.
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3 Qualitative theory of stochastic dynamical systems

(SDSs)

Qualitative theory of SDSs studies the dynamical behavior of solutions of stochastic differ-
ential equations on the entire time interval, e.g. such as recurrence and stability properties.

3.1. In the survey paper [53] (Arnold, 1981) the author considers some problems and
results of the qualitative theory of SDEs and provides a reference to papers where more
details can be found. There the SDSs are given by ordinary differential equations of the
form ẋ = f(x, ξ) with a random noise process ξ in the right hand side and a random initial
condition x(0) = x. An emphasis is made on nonlinear systems (icluding multiplicative
noise linear systems) and on stationary and Markovian noises. A related reference is [54].

3.2. A general framework of a stochastic version of the bifurcation theory is proposed
in [78] (Arnold, Boxler, 1992). The concepts are supported by one dimensional examples
which are perturbed versions of deterministic differential equations exhibiting the elemen-
tary bifurcation scenarious. As in some cases solutions may grow to infinity in a finite time
local SDSs have to be introduced then.

3.3. A criterion for the existence of global random attractors for RDSs is established
in [83] (Crauel, Flandoli, 1994). The existence of invariant Markov measures supported by
the random attractor is proved. For stochastic partial differential equations (SPDEs) this
yields invariant measures for the associated Markov semigroup. The results are applied to
reaction diffusion equations with additive white noise and to Navier-Stokes equations with
multiplicative and additive white noises.

3.4. Problems in the intersection of stochastic analysis and the theory of dynamical
systems are discussed in paper [85] (Arnold, 1995). The first problem discussed there is:

which SDEs generate SDSs (cocycles), and conversely, which cocycles have generators
that are SDEs?

By calling a process with stationary increments a helix, the answer can be given in the
form

semimartingale cocycle = exp{semimartingale helix}.

The second part of the paper provides a list of anticipative problems which arise if
the multiplicative ergodic theorem (MET) is used. As the first application of the MET a
linear SDE with a simple Lyapunov spectrum is decoupled. The second application of the
MET is a derivation of Furstenberg-Khasminskii formulas including the one for the lower
Lyapunov function.

3.5. A review of some almost sure and moment stability theory for linear SDEs, with
an indication which of the results carry over to equations with homogeneous vector fields,
is given in [86] (Arnold, Khasminskii, 1995). The carry over is valid in particular for
the estimates of Baxendale for the probability with which an almost surely stable system
exceeds a threshold. Those estimates are controlled by a number γ0 which is called the
stability index and which has the property that the γ0-th power of the solution is ”almost”
a martingale.
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The authors prove that these estimates remain true for a nonlinear equation which is
close to a homogeneous one in a neighborhood of zero.

3.6. In paper [87] (Pinsky, 1995) the author shows that the Lyapunov exponent has
the following property: for any Lyapunov-stable linear SDE the Lyapunov exponent is
invariant under all nonlinear perturbations.

A similar result is proved for Lyapunov-unstable systems.

3.7. A number of the stochastic stability theorems for random evolutions (which are
random operator dynamical systems) and for evolutionary stochastic systems (which are
their realizations) in averaging and diffusion approximation schemes are proved in book
[94] (Swishchuk, 1997) by using the martingale approach.

4 Numerical Approximation and Parameter Estima-

tion

4.1. The first article of this section is [113] (Kuchler, Platen, 2000). This paper introduces
an approach for the derivation of discrete time approximations for solutions of stochastic
differential equations with time delay. The following SDDE is considered.

dX(t) = a(t,X(t), X(t− r))dt+
m∑
j=1

bj(t,X(t), X(t− r))dW j(t) (4.1)

for t ∈ [0, T ] and r > 0. Here the given d-dimensional initial segment ξ is assumed to
be right continiuous having left hand limits. Assume Lipschitz continuity condition and
Growth condition of the coefficients in (4.1).

We introduce the time step size ∆l = r/l for l ≥ 2. Let us then define an equidistant
time discretisation τ∆l

= {τn : n = −l,−l + 1, . . . , 0, 1, . . . , N} of the time interval [−r, T ]
with τn = n∆l.

Let us consider a process Y ∆l = {Y ∆l(t), t ∈ [−r, T ]} that is right continuous with
left hand limits. We shall call Y ∆l a discrete time approximation with step size ∆l if
it is based on a time discretisation (τ)∆l

such that for each n ∈ {1, . . . , N}, the ran-
dom variable Y ∆l(τn) is Fτn-measurable and Y ∆l(τn+1) can be expressed as a function
of Y ∆l(τ−l), Y

∆l(τ−l+1), . . . , Y ∆l(τn), discretisation time τn and a finite number of Fτn+1-
measurable random variables Zn+1,j, j = 1, . . . , i.

We shall say that a discrete time approximation Y ∆l converges strongly with order
γ > 0 at the time T if there exists a positive constant C, which does not depend on ∆l

and L ∈ {2, 3, . . . } such that

ε(∆l) = E(|XT − Y ∆l(T )|) ≤ C(∆l)
γ

for each l ≥ L. Furthermore, Y ∆l converges strongly towards X at the time T if

lim
l→∞

ε(∆l) = 0.
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Let us now introduce the Euler approximation which is defined by

Yn+1 = Yn + a(τn, Yn, Yn−l)∆ +
m∑
j=1

bj(τn, Yn, Yn−1)∆W j
n (4.2)

with the Wiener process increments

∆W j
n = W j

n(τn+1)−W j
n(τn)

and with initial values
Yi = X(τi).

Theorem 21 Suppose a, b1, b2, . . . , bm are time homogeneous and that the Lipschitz condi-
tion and the Growth condition hold and that the initial segment ξ is in L2(Ω, C,F0). Then
the Euler approximation (4.2) converges strongly with order γ = 0.5.

One can observe, as already known for SDE’s, that higher order approximations, in general,
have to involve multiple stochastic integrals of higher multiplicity. For more details, see
the paper.

4.2. The next article is [112] (Kuchler, Kutoyants, 2000).
We observe the trajectory XT = {X(t), 0 ≤ t ≤ T} of the diffusion-type process X(t)

given by

dX(t) = bX(t− ϑ)dt+ dW (t), X(s) = X0(s), π/2b ≤ s ≤ 0, t ≥ 0 (4.3)

where b is a negative constant, ϑ is an unknown parameter from the set Θ = [0,−(eb)−1]
(we denote Θ0 = (0,−(eb)−1) as well) and X0(s) is a known continuous function. We are
interested in asymptotic properties of the maximum likelihood and Bayes estimator of the
parameter ϑ as T →∞.

Let us denote P
(T )
ϑ the measure induced in the measurable space of continuous on

[0, T ] functions (G[0, T ],B[0, T ]) by the solution of the equation (4.3). Here B[0, T ] denotes
the σ-algebra of Borel subsets of G[0, T ] with endowed supremum norm. The solutions
of (4.3) corresponding to different values of ϑ ∈ Θ are continuous, thus all the measures

{T (T )
ϑ , ϑ ∈ Θ} are equivalent and the likelihood ratio process

L(ϑ, ϑ1, X
T ) =

dP
(T )
ϑ

dP
(T )
ϑ1

(XT ), ϑ ∈ Θ

is given by the formula

L(ϑ, ϑ1, X
T ) = exp{b

∫ T

0

(X(t− ϑ)−X(t− ϑ1))dX(t)−

b2

2

∫ T

0

(X2(t− ϑ)−X2(t− ϑ1)dt},
(4.4)

where ϑ1 is some fixed value (Lipster, Shiryayev, 1977).
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The maximum likelihood estimator (MLE) ϑ̂T is defined as a solution of the equation

L(ϑ̂, ϑ1, X
T ) = sup

ϑ∈Θ
L(ϑ, ϑ1, X

T ).

Below we suppose that the true value ϑ is an interior point of Θ. We will see later that
the function L(ϑ, ϑ1, X

T ), ϑ ∈ Θ is continuous with probability one. Hence, the MLE ϑ̂T
exists and belongs to Θ. If (4.4) has more than one solution than we take any one as a
MLE.

To introduce the Bayesian estimator we suppose that ϑ is a random variable with a
prior density π(y), y ∈ Θ and the loss function is quadratic. Then the Bayes estimator
(BE) ϑ̃T is a posterior mean

ϑ̃T =

∫
Θ

yp(y|XT )dy,

where the posterior density p(y|XT ) is given by

p(y|XT ) =
π(y)L(y, ϑ1, X

T )∫
Θ
π(v)L(v, ϑ1, XT )dv

The limit distributions of these estimators can be expressed through the following stochastic
process

Z(u) = exp

{
bW̃ (u)− 1

2
|u|b2

}
, u ∈ R,

where W̃ (u) = W+(u) for u ≥ 0 and W̃ (u) = W−(−u) for u < 0 and W+(u), W−(u), u ≥ 0
are two independent standard Wiener processes. Let us introduce two random variables:

ξ = arg sup
u
Z(u), ζ =

∫∞
−∞ yZ(y)dy∫∞
−∞ Z(u)du

Let K be an arbitrary compact subset of Θ0. The following theorems describe the asymp-
totic behaviour of MLE and BE estimators.

Theorem 22 The MLE ϑ̂T of parameter ϑ ∈ Θ0 is uniform and consistent in K, the
normed difference T (ϑ̂T −ϑ) converges uniformly (in ϑ ∈ K) in distribution to the random
variable ξ and for any p > 0 the following holds

lim
T→∞

Eϑ|T (ϑ̂T − ϑ)|p = E|ξ|p.

Theorem 23 Let the prior density π(y), y ∈ Θ be a positive, continuous function, then the
BE ϑ̃T is uniformly consistent in K, the normed difference T (ϑ̃T −ϑ) converges uniformly
(in ϑ ∈ K) in distribution to the random variable ζ and for any p > 0 the following holds

lim
T→∞

Eϑ|T (ϑ̃T − ϑ)|p = E|ζ|p.

Moreover, the BE is asymptotically efficient.
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5 Applications

5.1. The paper [104] (Shaikhet, 1998) considers a predator-prey model which is described
by the following system of equations

ẋ1(t) = x1(t)

(
a−

∫ ∞
0

f1(s)x1(t− s)ds−
∫ ∞

0

f2(s)x2(t− s)ds
)
,

ẋ2(t) = −bx2(t) +

∫ ∞
0

g1(s)x1(t− s)ds
∫ ∞

0

g2(s)x2(t− s)ds,
(5.1)

where x1 and x2 are densities of predator and prey populations, resp. Assume, a and b are
positive constants, fi and gi, i = 1, 2, are non-negative functions, such that

αi =

∫ ∞
0

fids <∞, βi =

∫ ∞
0

gids <∞,

pi =

∫ ∞
0

sfids <∞, qi =

∫ ∞
0

sgids <∞.

It is easy to see that the positive equilibrium (x∗1, x
∗
2) of the system (5.1) is given by

x∗1 =
b

β1β2

, x∗2 =
a− α1x

∗
1

α2

=
aβ1β2 − bα1

α2β1β2

provided that (everywhere below this condition is assumed hold)

aβ1β2 > bα1.

Note, that some particular class of model (5.1) were often considered before, e.g.

fi(s) = aiδ(s), gi(s) = biδ(s− h), i = 1, 2, h ≥ 0,

where δ(s) is the Dirac function. Then the system (5.1) has the form

ẋ1(t) = x1(t)(a− a1x1(t)− a2x2(t)),

ẋ2(t) = −bx2(t) + b1b2x1(t− h)x2(t− h).

Let us assume that the system (5.1) is exposed by stochastic perturbations which are
of white noise type and are directly proportional to yi(t) = xi(t)− x∗i . That is, the system
has the following look

ẏ1(t) =− (y1(t) + x∗1)

(∫ ∞
0

f1(s)y1(t− s)ds+

∫ ∞
0

f2(s)y2(t− s)ds
)

+ σ1y1(t)Ẇ1(t),

ẏ2(t) =− by2(t) + x∗2

∫ ∞
0

g1(s)y1(t− s)ds+ x∗1

∫ ∞
0

g2(s)y2(t− s)ds+

+

∫ ∞
0

g1(s)y1(t− s)ds
∫ ∞

0

g2(s)y2(t− s)ds+ σ2y2(t)Ẇ2(t).

(5.2)

The stochastic stability of the trivial solution of (5.2) in the probability sense was estab-
lished by constructing appropriate Lyapunov functionals. The following theorem states
the result.
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Theorem 24 Let β1 > 1 and there are positive constants γ1, γ2, γ3, γ4 such that

2α1x
∗
1(1− p1x

∗
1) > σ2

1 + (γ1 + γ3p1x
∗
1)α2x

∗
1 + (γ2 + γ4q2x

∗
1)β1x

∗
2,

2(b− β2x
∗
1)(1− q2x

∗
1) > σ2

2 + (γ−1
1 + γ−1

3 p1x
∗
1)α2x

∗
1 + (γ−1

2 + γ−1
4 q2x

∗
1)β1x

∗
2.

Then the zero solution of the system (5.2) is stable in the probability sense.

5.2. In the article [125] (Swishchuk, Kazmerchuk, 2002) the following equation is
assumed to determine a discontinuous dynamics of stock price S(t).

dS(t) = [aS(t) + µS(t− τ)] dt+ σS(t− ρ)dW (t) +

∫ ∞
−1

yS(t)ν(dt, dy) (5.3)

Dynamics of the bond price is a determined process satisfying an equation:

dB(t) = [bB(t) + νB(t− β)]dt (5.4)

Within coditions of (B, S)-market the following terms were considered.
Discounted stock price: S∗(t) = S(t)/B(t), where S(t) and B(t) are defined by (5.3) and
(5.4).
Capital of the portfolio holder: X(t) = α(t)S(t)+β(t)B(t), where: (α(t), β(t)) is a portfolio
at the time t consisting of α(t) stocks and β(t) bonds.

The authors consider the following case studies of equations (5.3) and (5.4).

Theorem 25 (1) Consider a stability problem for the following system.{
dS(t) = [aS(t) + µS(t− τ)]dt+ σS(t− ρ)dW (t)

dB(t) = [bB(t) + νB(t− β)]dt
(5.5)

The following was obtained by constructing appropriate Lypunov functionals. Assume

a+
σ2

2
+ |µ| < 0, b+ |ν| < 0. (5.6)

Then the trivial solution of the system (5.5) is exponentially stable.
(2) Consider a discounted stock price S∗(t) = S(t)/B(t) with S(t) and B(t) satisfying

the system of equations (5.5). Assume

a+
σ2

2
+ |µ| < 0. (5.7)

Then, a stochastic process S∗(t) (as a solution of appropriate equation) is exponentially
stable.

(3) Consider an equation for the stock price with jump component:

dS(t) = (aS(t) + µS(t− τ))dt+ σS(t− ρ)dW (t) +

∫ +∞

−1

yS(t)ν(dt, dy) (5.8)
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Assume

a+
1

2

∫ +∞

−1

y2Π(dy) + |µ|+ σ2/2 < 0 (5.9)

Then, the trivial solution of (5.8) is exponentially stable.
(4) Let us consider the following capital process:

X(t) = β(t)B(t) + γ(t)S(t)

with S(t) and B(t) defined by (5.5). Then, X(t)and Y (t) = −β(t)B(t) + γ(t)S(t) satisfy
the following system of equations (for simplicity we impose β = ρ = τ = 1)

dXt =
1

2

[
(a+ b)Xt + (ν

βt
βt−1

+ µ
γt
γt−1

)Xt−1 + (a− b)Yt + (−ν βt
βt−1

+ µ
γt
γt−1

)Yt−1

]
dt

+
1

2
σ
γt
γt−1

(Xt−1 + Yt−1)dWt

dYt =
1

2
[(a− b)Xt + (−ν βt

βt−1

+ µ
γt
γt−1

)Xt−1 + (a+ b)Yt + (ν
βt
βt−1

+ µ
γt
γt−1

)Yt−1]dt

+
1

2
σ
γt
γt−1

(Xt−1 + Yt−1)dWt

The analysis of exponential stability of this system was reduced to the analysis of principal
minors of the matrix 4× 4.

5.3. In the article [126] (Kazmerchuk, Swishchuk, Wu, 2002) the authors consider an
option pricing problem for financial securities market with delayed response. The following
sdde is assumed to describe the evolution of stock price:

dS(t) = rS(t)dt+ σ(t, St)S(t)dW (t) (5.10)

with continuous deterministic initial data S0 = ϕ ∈ C := C([−τ, 0], R), here σ represents
a volatility which is a continuous function of time and the elements of C.

The existence and uniqueness of solution of (5.10) are guaranteed if the coefficients
in (5.10) satisfy usual local Lipschitz and growth conditions. The authors were primarily
interested in an option price value, which is assumed to depend on the current and previous
stock price values in the following way:

F (t, St) =

∫ 0

−τ
e−rθH(S(t+ θ), S(t), t)dθ, (5.11)

where H ∈ C0,2,1(R×R×R+). Then, an analogue of Ito’s formula for (5.10) and (5.11) was
derived. Using this, the following general integral-differential equation was established.

Theorem 26 Suppose the functional F is given by (5.11) with S(t) satisfying (5.10) and
H ∈ C0,2,1(R×R×R+). Then, H(S(t+ θ), S(t), t) satisfies the following equation

0 = H|θ=0 − e−rθH|θ=−τ +

∫ 0

−τ
e−rθ

(
H ′3 + rS(t)H ′2 +

1

2
σ2(t, St)S

2(t)H ′′22

)
dθ (5.12)

for all t ∈ [0, T ].
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A simplifying assumptions was made, and the following closed-form solution of (5.12) was
introduced:

F (t, St) = h1(S(t), t) +
1

2

∫ T

t

er(t−ξ)
[
σ2(ξ, St)− V

]
S2(t)

∂2h1

∂S2
(S(t), ξ) dξ, (5.13)

where h1(S(t), t) is a classical Black-Scholes call option price with the variance assumed
equal to a long-run variance rate V :

h1(S(t), t) = S(t)N(d1)−Ke−r(T−t)N(d2), (5.14)

with N(x) = 1√
2π

∫ x
−∞ e

−x2
dx and d1, d2 defined as

d1 =
ln(S(t)/K) + (r + V/2)(T − t)√

V (T − t)
,

d2 = d1 −
√
V (T − t).

Also, authors derived a continuous-time analogue of discrete GARCH(1,1) model. The
derived model appeared to be a stochastic volatility model with the variance rate σ2(t)
satisfying

dσ2(t)

dt
= γV +

α

τ
ln2

(
S(t)

S(t− τ)

)
− (α + γ)σ2(t), (5.15)

where V is a long-run average variance rate, α and γ are positive constants such that
α + γ < 1. Here, S(t) is a solution of the sdde (5.10) with positive initial data ϕ ∈ C. A
closed-form expression for σ2(t) was introduced which in combination with (5.13) led to
the following formula for an option price:

F (t, St) = h1(S(t), t)+(Σ(St)−V )I(r, t, S(t))+(σ2(t)−Σ(St))I(r+α+γ, t, S(t)), (5.16)

where h1(S(t), t) is given by (5.14) and

Σ(St) =
α

τ(α + γ)
ln2

(
S(t)

S(t− τ)

)
+

γV

α + γ
,

I(p, t, S(t)) =
1

2
S2(t)

∫ T

t

ep(t−ξ)
∂2h1

∂S2
(S(t), ξ)dξ for p ≥ 0.

5.4. In the article [110] (Chang, Youree, 1999) the authors propose a model for the
(B, S)-market in which the dynamics of the stock price and the bank account are described
by linear SDDEs. In particular, the pricing of the European contingent claims is studied
and the corresponding trading strategy is derived.

Specifically, the authors assume that B and S evolve according to the following two
linear stochastic functional differential equations:

dB(t) = L(Bt)dt,

dS(t) = M(St)dt+N(St)dW (t),
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with initial price functions B0 = φ and S0 = ψ, where φ and ψ are given functions in
C+ := {φ ∈ C[−h, 0] | φ(θ) ≥ 0 for all θ ∈ [−h, 0]}. In the above, L, M and N are
bounded linear functionals on the real Banach space C[−h, 0].

It was established an existence of a unique probability measure P̃ such that

P̃ (A) = E[1AZ(T )] for all A ∈ FT , 0 < T <∞,

where

Z(t) = exp

{∫ t

0

γ(Bs, Ss)dW (s)− 1

2

∫ t

0

γ(Bs, Ss)
2ds

}
,

γ(φ, ψ) =
φ(0)M(ψ)− ψ(0)L(φ)

φ(0)N(ψ)
.

Then, it was proved that the discounted wealth process

Y π(t) = (π1(t)B(t) + π2(t)S(t))/B(t)

for a given self-financing trading strategy (π1(t), π2(t)) is a local martingale under the
probability measure P̃ .

The main results of this paper are summarized in the following theorem.

Theorem 27 Let Λ be an FT -measurable random variable such that E[Λ1+ε] < ∞ for
some ε > 0. Then the rational price C of the contingent claim Λ is given by

C = EP̃ [e−rTΛ],

where r is a positive constant that satisfies r = L(er·). Furthermore, there exists a minimal
hedging strategy π∗ = {(π∗1(t), π∗2(t)), 0 ≤ t ≤ T}.
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